Integration and removable singularities for Stokes’ Theorem

Besançon, 28/09/2021

Antoine Julia

Institut de Mathématiques d’Orsay
Fundamental “theorem” of integration

If a function is regular enough, integrating its derivative gives back the function itself.
Fundamental “theorem” of integration

If a function is regular enough, integrating its derivative gives back the function itself.

<table>
<thead>
<tr>
<th>Main examples</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fundamental theorem)(f : [0, 1] \to \mathbb{R})</td>
<td>[\int_{0}^{1} f' = f(1) - f(0).] Regularity of (f)?</td>
</tr>
</tbody>
</table>
Fundamental theorems of integration

Fundamental “theorem” of integration

If a function is regular enough,
integrating its derivative gives back the function itself.

<table>
<thead>
<tr>
<th>Main examples</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| *(Fundamental theorem)*
$f : [0, 1] \rightarrow \mathbb{R}$
$\int_0^1 f' = f(1) - f(0)$. | Regularity of f? |
| *(Divergence Theorem)*
$\Omega \subset \mathbb{R}^m$,
$v : \Omega \rightarrow \mathbb{R}^m$
$\int_\Omega \text{div } v = \int_{\partial \Omega} v \cdot n$. | Regularity of $\partial \Omega$? |
Fundamental theorems of integration

Fundamental “theorem” of integration

If a function is regular enough, integrating its derivative gives back the function itself.

<table>
<thead>
<tr>
<th>Main examples</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| **(Fundamental theorem)**
$f : [0, 1] \to \mathbb{R}$
$\int_0^1 f' = f(1) - f(0)$. | Regularity of f? |
| **(Divergence Theorem)**
$\Omega \subset \mathbb{R}^m$,
$v : \Omega \to \mathbb{R}^m$
$\int_\Omega \text{div} \ v = \int_{\partial \Omega} v \cdot \nu$. | Regularity of $\partial \Omega$? |
| **(Stokes’ Theorem)**
$M^m \subset \mathbb{R}^n$ surface,
$\omega : M \to \Lambda^{m-1}(\mathbb{R}^n)$
$\int_M d\omega = \int_{\partial M} \omega$. | Regularity of M? |
Fundamental “theorem” of integration

If a function is regular enough, integrating its derivative gives back the function itself.

<table>
<thead>
<tr>
<th>Main examples</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fundamental theorem) (f : [0, 1] \to \mathbb{R}) (\int_0^1 f' = f(1) - f(0)).</td>
<td>Regularity of (f)?</td>
</tr>
<tr>
<td>(Divergence Theorem) (\Omega \subset \mathbb{R}^m), (\mathbf{v} : \Omega \to \mathbb{R}^m) (\int_\Omega \text{div} \mathbf{v} = \int_{\partial \Omega} \mathbf{v} \cdot \nu).</td>
<td>Regularity of (\partial \Omega)?</td>
</tr>
<tr>
<td>(Stokes’ Theorem) (M^m \subset \mathbb{R}^n) surface, (\omega : M \to \Lambda^{m-1}(\mathbb{R}^n)) (\int_M \omega = \int_{\partial M} \omega).</td>
<td>Regularity of (M)?</td>
</tr>
</tbody>
</table>

What are the minimal assumptions?
Applications: integration by parts and weak solutions

Extreme example:
Suppose that \(u \in C^1(B(0,1)) \) satisfies
\[
\Delta u(x) = 0 \quad \text{for all } x \in B(0,1) \setminus E.
\]

If, given \(\phi \in C_c^\infty(B(0,1)) \), we can write:
\[
\int_{B(0,1)} \Delta \phi(x) u(x) \, dx = - \int_{B(0,1)} \nabla \phi \cdot \nabla u = \int_{B(0,1)} \phi(x) \Delta u(x) \, dx = 0.
\]
Applications: integration by parts and weak solutions

Extreme example:
Suppose that $u \in C^1(B(0,1))$ satisfies
$$\Delta u(x) = 0 \quad \text{for all } x \in B(0,1) \setminus E.$$

If, given $\phi \in C_c^\infty(B(0,1))$, we can write:
$$\int_{B(0,1)} \Delta \phi(x) u(x) \, dx = - \int_{B(0,1)} \nabla \phi \cdot \nabla u = \int_{B(0,1)} \phi(x) \Delta u(x) \, dx = 0.$$

$\Rightarrow u$ is weakly harmonic in $B(0,1)$
Extreme example:
Suppose that $u \in C^1(B(0,1))$ satisfies
\[\Delta u(x) = 0 \quad \text{for all } x \in B(0,1) \setminus E. \]

If, given $\phi \in C^\infty_c(B(0,1))$, we can write:
\[\int_{B(0,1)} \Delta \phi(x) u(x) \, dx = - \int_{B(0,1)} \nabla \phi \cdot \nabla u = \int_{B(0,1)} \phi(x) \Delta u(x) \, dx = 0. \]

$\Rightarrow u$ is weakly harmonic in $B(0,1)$
$\Rightarrow u$ is strongly harmonic.
Extreme example:
Suppose that \(u \in C^1(B(0,1)) \) satisfies
\[
\Delta u(x) = 0 \quad \text{for all } x \in B(0,1) \setminus E.
\]

If, given \(\phi \in C_c^\infty(B(0,1)) \), we can write:
\[
\int_{B(0,1)} \Delta \phi(x) u(x) \, dx = - \int_{B(0,1)} \nabla \phi \cdot \nabla u = \int_{B(0,1)} \phi(x) \Delta u(x) \, dx = 0.
\]

\(\Rightarrow \) \(u \) is weakly harmonic in \(B(0,1) \)
\(\Rightarrow u \) is strongly harmonic.

We say that such a set \(E \) is \textbf{removable} for \(C^1 \) harmonic functions.

General question: characterize removable sets.

Other examples:
Holomorphic functions, PDEs in divergence form, ...

For Stokes' theorem:
minimal surfaces and calibrations it is necessary to allow for singular subsets.
Applications: integration by parts and weak solutions

Extreme example:
Suppose that \(u \in C^1(B(0,1)) \) satisfies
\[
\Delta u(x) = 0 \quad \text{for all } x \in B(0,1) \setminus E.
\]
If, given \(\phi \in C_c^\infty(B(0,1)) \), we can write:
\[
\int_{B(0,1)} \Delta \phi(x) u(x) \, dx = - \int_{B(0,1)} \nabla \phi \cdot \nabla u = \int_{B(0,1)} \phi(x) \Delta u(x) \, dx = 0.
\]
\[\Rightarrow u \text{ is weakly harmonic in } B(0,1)\]
\[\Rightarrow u \text{ is strongly harmonic.}\]

We say that such a set \(E \) is **removable** for \(C^1 \) harmonic functions.

General question: characterize removable sets.

Other examples:
Holomorphic functions, PDEs in divergence form, ...
Applications: integration by parts and weak solutions

Extreme example:
Suppose that $u \in C^1(B(0,1))$ satisfies
$$\Delta u(x) = 0 \quad \text{for all } x \in B(0,1) \setminus E.$$

If, given $\phi \in C_c^\infty(B(0,1))$, we can write:
$$\int_{B(0,1)} \Delta \phi(x) u(x) \, dx = -\int_{B(0,1)} \nabla \phi \cdot \nabla u = \int_{B(0,1)} \phi(x) \Delta u(x) \, dx = 0.$$

$\Rightarrow u$ is weakly harmonic in $B(0,1)$
$\Rightarrow u$ is strongly harmonic.

We say that such a set E is **removable** for C^1 harmonic functions.

General question: characterize removable sets.

Other examples:
Holomorphic functions, PDEs in divergence form, ...
For Stokes’ theorem: **minimal surfaces and calibrations**
\Rightarrow it is necessary to allow for **singular subsets**.
1-dimensional integration

Question

$f : [0, 1] \rightarrow \mathbb{R}$, continuous, differentiable on $[0, 1] \setminus E$. Do we have

$$\int_0^1 f' = f(1) - f(0)$$
1-dimensional integration

Question

\[f : [0, 1] \rightarrow \mathbb{R}, \text{continuous, differentiable on } [0, 1] \setminus E. \text{ Do we have} \]

\[\int_0^1 f' = f(1) - f(0)? \]

- \(E \) of zero measure is not enough (Devil’s staircase).
1-dimensional integration

Question

$f : [0, 1] \rightarrow \mathbb{R}$, continuous, differentiable on $[0, 1] \setminus E$. Do we have

$$\int_0^1 f' = f(1) - f(0)?$$

- E of zero measure is not enough (Devil’s staircase).
- f' must be integrable, even if $E = \emptyset$.
1-dimensional integration

Question

$f : [0, 1] \to \mathbb{R}$, continuous, differentiable on $[0, 1] \setminus E$. Do we have

$$\int_0^1 f' = f(1) - f(0)?$$

- E of zero measure is not enough (Devil’s staircase).
- f' must be integrable, even if $E = \emptyset$.

$f : x \mapsto \begin{cases} x^2 \sin(x^{-2}) & \text{if } x > 0, \\ 0 & \text{if } x = 0. \end{cases}$
Question

$f : [0, 1] \rightarrow \mathbb{R}$, continuous, differentiable on $[0, 1] \setminus E$. Do we have

$$\int_0^1 f' = f(1) - f(0) ?$$

- E of zero measure is not enough (Devil’s staircase).
- f' must be integrable, even if $E = \emptyset$.

$$f : x \mapsto \begin{cases} \ x^2 \sin(x^{-2}) & \text{if } x > 0, \\ 0 & \text{if } x = 0. \end{cases}$$
1-dimensional integration

Question

$f : [0, 1] \to \mathbb{R}$, continuous, differentiable on $[0, 1] \setminus E$. Do we have

$$\int_0^1 f' = f(1) - f(0)?$$

- E of zero measure is not enough (Devil’s staircase).
- f' must be integrable, even if $E = \emptyset$.

$$f : x \mapsto \begin{cases} x^2 \sin(x^{-2}) & \text{if } x > 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Lebesgue is not enough,
1-dimensional integration

Question

\(f : [0, 1] \to \mathbb{R} \), continuous, differentiable on \([0, 1] \setminus E\). Do we have

\[
\int_0^1 f' = f(1) - f(0) ?
\]

- \(E \) of zero measure is not enough (Devil’s staircase).
- \(f' \) must be integrable, even if \(E = \emptyset \).

\[
f : x \mapsto \begin{cases}
 x^2 \sin(x^{-2}) & \text{if } x > 0, \\
 0 & \text{if } x = 0.
\end{cases}
\]

Lebesgue is not enough,
(Denjoy, Perron, Henstock, Kurzweil).
Let us prove the fundamental theorem for a differentiable function \(F \):

Main question: is \(F' \) integrable?

Definition: \(f \) is integrable if there exists and \(\forall \varepsilon > 0 \), there exists such that for every tagged partition \((a_j, a_j + 1, x_j) \) \(j = 1, \ldots, k \) with \(x_j \in [a_j, a_j + 1] \) and \(a_{j+1} - a_j < \delta \),

\[
\left| \left(f \right) - \sum_{j} f(x_j)(a_{j+1} - a_j) \right| < \varepsilon.
\]

\(F \) is differentiable, so Given \(\varepsilon > 0 \), there exists \(\delta > 0 \) with:

\[
|y - x| < \delta \Rightarrow |F(y) - F(x) - F'(x)(y - x)| < \varepsilon |y - x|.
\]

Summing over the tagged partition:

\[
(f) := F(1) - F(0) = \sum f(a_{j+1}) - F(a_j) = \sum f'(x_j)(a_{j+1} - a_j) + O(\varepsilon).
\]

Crucial point: a \(\delta \)-fine tagged partition exists! (Cousin's Lemma).

Theorem: If \(F \) is differentiable, then \(F' \) is HK integrable.
The Henstock-Kurzweil integral

Let us prove the fundamental theorem for a differentiable function F:

Main question: is F' integrable?

Definition: Riemann integral

f is **Riemann integrable** if there exists $R(f) \in \mathbb{R}$ and

$\forall \varepsilon > 0$, there exists $\delta > 0$ such that for every tagged partition

$([a_j, a_{j+1}], x_j)_{j=1,\ldots,k}$ with $x_j \in [a_j, a_{j+1}]$ and $a_{j+1} - a_j < \delta$,

$$|R(f) - \sum_j f(x_j)(a_{j+1} - a_j)| < \varepsilon.$$
The Henstock-Kurzweil integral

Let us prove the fundamental theorem for a differentiable function F:

Main question: is F' integrable?

Definition: Riemann integral

f is **Riemann integrable** if there exists $R(f) \in \mathbb{R}$ and $\forall \varepsilon > 0$, there exists $\delta > 0$ such that for every tagged partition $([a_j, a_{j+1}], x_j)_{j=1,\ldots,k}$ with $x_j \in [a_j, a_{j+1}]$ and $a_{j+1} - a_j < \delta$,

$$|R(f) - \sum_j f(x_j)(a_{j+1} - a_j)| < \varepsilon.$$

F is differentiable, so Given $\varepsilon > 0$, there exists $\delta > 0$ with:

$$|y - x| < \delta \quad \Rightarrow \quad |F(y) - F(x) - F'(x)(y - x)| < \varepsilon|y - x|.$$
Let us prove the fundamental theorem for a differentiable function F:

Main question: is F' integrable?

Definition: Riemann integral

f is **Riemann integrable** if there exists $R(f) \in \mathbb{R}$ and $\forall \varepsilon > 0$, there exists $\delta > 0$ such that for every tagged partition $([a_j, a_{j+1}], x_j)_{j=1,...,k}$ with $x_j \in [a_j, a_{j+1}]$ and $a_{j+1} - a_j < \delta$,

$$|R(f) - \sum_j f(x_j)(a_{j+1} - a_j)| < \varepsilon.$$

F is differentiable, so given $\varepsilon > 0$, there exists $\delta > 0$ with:

$$|y - x| < \delta \quad \Rightarrow \quad |F(y) - F(x) - F'(x)(y - x)| < \varepsilon |y - x|.$$

Summing over the tagged partition:

$$R(f) := F(1) - F(0) = \sum_j (F(a_{j+1}) - F(a_j)) = \sum_j F'(x_j)(a_{j+1} - a_j) + O(\varepsilon).$$
Let us prove the fundamental theorem for a differentiable function F:

Main question: is F' integrable?

Definition: Henstock-Kurzweil integral

f is **Henstock-Kurzweil integrable** if there exists $HK(f) \in \mathbb{R}$ and $\forall \varepsilon > 0$, $\forall x$ there exists $\delta(x) > 0$ such that for every tagged partition $([a_j, a_{j+1}], x_j)_{j=1,...,k}$ with $x_j \in [a_j, a_{j+1}]$ and $a_{j+1} - a_j < \delta(x_j)$,

$$|HK(f) - \sum_j f(x_j)(a_{j+1} - a_j)| < \varepsilon.$$

F is differentiable at x, so Given $\varepsilon > 0$, there exists $\delta(x) > 0$ with:

$$|y - x| < \delta(x) \implies |F(y) - F(x) - F'(x)(y - x)| < \varepsilon |y - x|.$$

Summing over the tagged partition:

$$HK(f) := F(1) - F(0) = \sum_j (F(a_{j+1}) - F(a_j)) = \sum_j F'(x_j)(a_{j+1} - a_j) + O(\varepsilon).$$
The Henstock-Kurzweil integral

Let us prove the fundamental theorem for a differentiable function F:
Main question : is F' integrable?

Definition : Henstock-Kurzweil integral

f is **Henstock-Kurzweil integrable** if there exists $HK(f) \in \mathbb{R}$ and $\forall \varepsilon > 0$, $\forall x$ there exists $\delta(x) > 0$ such that for every tagged partition $([a_j, a_{j+1}], x_j)_{j=1,...,k}$ with $x_j \in [a_j, a_{j+1}]$ and $a_{j+1} - a_j < \delta(x_j)$,

$$|HK(f) - \sum_j f(x_j)(a_{j+1} - a_j)| < \varepsilon.$$

F is differentiable at x, so Given $\varepsilon > 0$, there exists $\delta(x) > 0$ with :

$$|y - x| < \delta(x) \quad \Rightarrow \quad |F(y) - F(x) - F'(x)(y - x)| < \varepsilon |y - x|.$$

Summing over the tagged partition :

$$HK(f) := F(1) - F(0) = \sum_j (F(a_{j+1}) - F(a_j)) = \sum_j F'(x_j)(a_{j+1} - a_j) + O(\varepsilon).$$

Crucial point : a δ-fine tagged partition exists! (Cousin’s Lemma).
The Henstock-Kurzweil integral

Let us prove the fundamental theorem for a differentiable function F:
Main question: is F' integrable?

Definition: Henstock-Kurzweil integral

f is **Henstock-Kurzweil integrable** if there exists $HK(f) \in \mathbb{R}$ and $orall \varepsilon > 0$, $orall x$ there exists $\delta(x) > 0$ such that for every tagged partition $([a_j, a_{j+1}], x_j)_{j=1, \ldots, k}$ with $x_j \in [a_j, a_{j+1}]$ and $a_{j+1} - a_j < \delta(x_j)$,

$$|HK(f) - \sum_{j} f(x_j)(a_{j+1} - a_j)| < \varepsilon.$$

F is differentiable at x, so given $\varepsilon > 0$, there exists $\delta(x) > 0$ with:

$$|y - x| < \delta(x) \Rightarrow |F(y) - F(x) - F'(x)(y - x)| < \varepsilon|y - x|.$$

Summing over the tagged partition:

$$HK(f) := F(1) - F(0) = \sum_{j} (F(a_{j+1}) - F(a_j)) = \sum_{j} F'(x_j)(a_{j+1} - a_j) + O(\varepsilon).$$

Crucial point: a δ-fine tagged partition exists! (Cousin’s Lemma).

Theorem. If F is differentiable, then F' is HK integrable.
Theorem (Henstock (1961)-Kurzweil (1957))

Let \(f : [0, 1] \to \mathbb{R} \) be continuous, differentiable except on a countable set, then

\[
(HK) \int_0^1 f' = f(1) - f(0).
\]
The fundamental theorem of Henstock-Kurzweil integration

Theorem (Henstock (1961)-Kurzweil (1957))

Let $f : [0, 1] \rightarrow \mathbb{R}$ be continuous, differentiable except on a countable set, then

$$
(HK) \int_0^1 f' = f(1) - f(0).
$$

The countability assumption is sharp!
The fundamental theorem of Henstock-Kurzweil integration

Theorem (Henstock (1961)-Kurzweil (1957))

Let \(f : [0,1] \rightarrow \mathbb{R} \) be continuous, differentiable except on a countable set, then

\[
(HK) \int_0^1 f' = f(1) - f(0).
\]

The countability assumption is sharp!

(Zahorski 1946 : the non-differentiability set contains a \(G_\delta \).)
The fundamental theorem of Henstock-Kurzweil integration

Theorem (Henstock (1961)-Kurzweil (1957))

Let $f : [0, 1] \rightarrow \mathbb{R}$ be continuous, differentiable except on a countable set, then

$$\int_0^1 f' = f(1) - f(0).$$

The countability assumption is sharp!

(Zahorski 1946: the non-differentiability set contains a G_δ; a G_δ contains a Cantor set;
The fundamental theorem of Henstock-Kurzweil integration

Theorem (Henstock (1961)-Kurzweil (1957))

Let $f : [0, 1] \to \mathbb{R}$ be continuous, differentiable except on a countable set, then

$$(HK) \int_0^1 f' = f(1) - f(0).$$

The countability assumption is sharp!
(Zahorski 1946: the non-differentiability set contains a G_δ; a G_δ contains a Cantor set; a Cantor set supports a Devil’s staircase).
Theorem (Henstock (1961)-Kurzweil (1957))

Let $f : [0, 1] \to \mathbb{R}$ be continuous, differentiable except on a countable set, then

$$
(HK) \int_{0}^{1} f' = f(1) - f(0).
$$

The countability assumption is sharp!

(Zahorski 1946: the non-differentiability set contains a G_δ; a G_δ contains a Cantor set; a Cantor set supports a Devil’s staircase).

One could ask f to be only “pointwise Lipschitz continuous” (and use the Rademacher-Stepanoff theorem).
Theorem (W. F. Pfeffer (1991))

If a integral on $[0, 1]$ satisfies the generalized fundamental theorem and can be extended to $[0, 1]^2$ by Fubini then it does not satisfy the generalized divergence theorem.
Theorem (W. F. Pfeffer (1991))

If a integral on $[0, 1]$ satisfies the generalized fundamental theorem and can be extended to $[0, 1]^2$ by Fubini

then it does not satisfy the generalized divergence theorem.

Why this problem? Geometry:

E
Integration in higher dimension

Theorem (W. F. Pfeffer (1991))

If a integral on $[0, 1]$ satisfies the generalized fundamental theorem and can be extended to $[0, 1]^2$ by Fubini then it does not satisfy the generalized divergence theorem.

Why this problem? Geometry:

v a vector field in the set

Estimate the flux in a subset A_j

$$\left| \text{div} \, v(x_j)|A_j| - \int_{\partial A_j} v \cdot \nu_{A_j} \right| \leq \varepsilon d(A_j) \mathcal{P}(A_j).$$
Integration in higher dimension

Theorem (W. F. Pfeffer (1991))

If an integral on $[0,1]$ satisfies the generalized fundamental theorem and can be extended to $[0,1]^2$ by Fubini, then it does not satisfy the generalized divergence theorem.

Why this problem? Geometry:

A vector field in the set

Estimate the flux in a subset A_j

$$\left| \text{div} \mathbf{v}(x_j)|A_j| - \int_{\partial A_j} \mathbf{v} \cdot \mathbf{n}_{A_j} \right| \leq \varepsilon d(A_j) \mathcal{P}(A_j).$$

Since we sum over the sets A_j they must satisfy $d(A_j) \mathcal{P}(A_j) \leq C|A_j|$.
Integration in higher dimension

Theorem (W. F. Pfeffer (1991))

If a integral on $[0,1]$ satisfies the generalized fundamental theorem and can be extended to $[0,1]^2$ by Fubini

then it does **not** satisfy the generalized divergence theorem.

Why this problem? Geometry:

- $x_1 \in A_1$
- $x_2 \in A_2$
- E

v a vector field in the set

Estimate the flux in a subset A_j

$$\left| \text{div} v(x_j)|A_j| - \int_{\partial A_j} v \cdot \nu_{A_j} \right| \leq \varepsilon d(A_j) \mathcal{P}(A_j).$$

Since we sum over the sets A_j they must satisfy $d(A_j)\mathcal{P}(A_j) \leq C|A_j|.$

(Mawhin, Pfeffer, Howard): divergence theorem in BV subsets of \mathbb{R}^m:

For v continuous, differentiable except on a \mathcal{H}^{m-1} σ-finite set.
What of surfaces?

Theorem (J., 2018)

There is a surface $M \subset \mathbb{R}^3$, with one singular point and a 1-form ω smooth except at one point such that

$$0 = \int_M d\omega \neq \int_{\partial M} \omega.$$

Example with a singular segment:
Theorem (J., 2018)

There is a surface $M \subset \mathbb{R}^3$, with one singular point and a 1-form ω smooth except at one point such that

$$0 = \int_M d\omega \neq \int_{\partial M} \omega.$$

Example with a singular segment:

- $L(\Gamma_n) \to +\infty$,
- $\Gamma_n \to \Gamma_\infty = [0,1] \times \{(0,0)\},$
What of surfaces?

Theorem (J., 2018)

There is a surface $M \subset \mathbb{R}^3$, with one singular point and a 1-form ω smooth except at one point such that

$$0 = \int_M \omega = \int_{\partial M} \omega.$$

Example with a singular segment:

- $L(\Gamma_n) \to +\infty$,
- $\Gamma_n \to \Gamma_\infty = [0,1] \times \{(0,0)\}$,
What of surfaces?

Theorem (J., 2018)

There is a surface $M \subset \mathbb{R}^3$, with one singular point and a 1-form ω smooth except at one point such that

$$0 = \int_M d\omega = \int_{\partial M} \omega.$$

Example with a singular segment:

- $L(\Gamma_n) \to +\infty$,
- $\Gamma_n \to \Gamma_\infty = [0,1] \times \{(0,0)\}$,
- $\forall n, \int_{\Gamma_n} \omega = 1$
- $\omega \to 0$ on Γ_∞.
- $d\omega = 0$.
What of surfaces?

Theorem (J., 2018)

There is a surface $M \subset \mathbb{R}^3$, with one singular point and a 1-form ω smooth except at one point such that

$$0 = \int_M d\omega \neq \int_{\partial M} \omega.$$

Example with a singular segment:

- $L(\Gamma_n) \rightarrow +\infty$,
- $\Gamma_n \rightarrow \Gamma_\infty = [0,1] \times \{0,0\}$,
- $\forall n, \int_{\Gamma_n} \omega = 1$,
- $\omega \rightarrow 0$ on Γ_∞,
- $d\omega = 0$.
What of surfaces?

Theorem (J., 2018)

There is a surface $M \subset \mathbb{R}^3$, with one singular point and a 1-form ω smooth except at one point such that

$$0 = \int_M d\omega = \int_{\partial M} \omega.$$

Example with a singular segment:

- $L(\Gamma_n) \to +\infty$,
- $\Gamma_n \to \Gamma_\infty = [0, 1] \times \{(0, 0)\}$,
- $\forall n, \int_{\Gamma_n} \omega = 1$
- $\omega \to 0$ on Γ_∞.
- $d\omega = 0$.

Question:

On which singular surfaces does Stokes’ Theorem hold?
Generalized surfaces: integral currents of dimension m in \mathbb{R}^n.

Theorem (J., 2018)

The following currents satisfy a generalized Stokes’ Theorem:

• All 1-dimensional integral currents (countable unions of curves)

• Mass minimizing currents with smooth boundary.

• O-minimal chains (including all compact analytic varieties).

• More generally: Currents whose singular set has finite intrinsic Minkowski content.
Theorem (J., 2018)

The following currents satisfy a generalized Stokes’ Theorem:

- All 1-dimensional integral currents (countable unions of curves)
- Mass minimizing currents with smooth boundary.
- O-minimal chains (including all compact analytic varieties).
- More generally: Currents whose singular set has finite intrinsic Minkowski content.
Generalized surfaces: integral currents of dimension m in \mathbb{R}^n.

Theorem (J., 2018)

The following currents satisfy a generalized Stokes’ Theorem:

- All 1-dimensional integral currents (countable unions of curves)
- Mass minimizing currents with smooth boundary.
Good surfaces

Generalized surfaces: integral currents of dimension m in \mathbb{R}^n.

Theorem (J., 2018)

The following currents satisfy a generalized Stokes’ Theorem:

- All 1-dimensional integral currents (countable unions of curves)
- Mass minimizing currents with smooth boundary.
- O-minimal chains (including all compact analytic varieties).
Generalized surfaces: integral currents of dimension m in \mathbb{R}^n.

Theorem (J., 2018)

The following currents satisfy a generalized Stokes’ Theorem:

- All 1-dimensional integral currents (countable unions of curves)
- Mass minimizing currents with smooth boundary.
- O-minimal chains (including all compact analytic varieties).
- More generally: Currents whose singular set has finite intrinsic Minkowski content.
Good surfaces

Generalized surfaces: integral currents of dimension m in \mathbb{R}^n.

Theorem (J., 2018)

The following currents satisfy a generalized Stokes’ Theorem:

- All 1-dimensional integral currents (countable unions of curves)
- Mass minimizing currents with smooth boundary.
- O-minimal chains (including all compact analytic varieties).
- More generally: Currents whose singular set has finite intrinsic Minkowski content.

Remarks

- These results have proofs in the context of Lebesgue integration.
- We can allow for discontinuities, weaker differentiability...

Questions

- Is there a “metric” way to do it? Using Christ-David cubes?
- Other surfaces? Stokes’ on oriented varifolds?