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Goal, setting and motivations

Definition (Homogeneous Sobolev and Besov spaces)

Let p, q ∈ [1,+∞], p 6= 1, s ∈ R, k ∈ N, we define homogeneous
Besov and Sobolev spaces on Rd

Ẇ k,p(Rd) := { u ∈ S′h(Rd) | ‖u‖Ẇ k,p(Rd ) < +∞},

Ḃs
p,q(Rd) := { u ∈ S′h(Rd) | ‖u‖Ḃs

p,q(Rd ) < +∞},

‖u‖Ẇ k,p(Rd ) := ‖∇ku‖Lp(Rd ), ‖u‖Ḃs
p,q(Rd ) := ( Σ

k∈Z
2qks‖∆ku‖qLp(Rd )

)
1
q

where

S′h(Rd) := { u ∈ S′(Rd) |Θ(λD)u
L∞
−!
λ!+∞

0,∀Θ ∈ C∞c (Rd) }

with (∆j)j∈Z an homogeneous Littlewood-Paley decomposition.
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Few remarks,

• We set Ẋ (Rd
+) := Ẋ (Rd)|Rd+

, where X ∈ {W s,p,Bs
p,q}.

• Ẇ s,p, Ḃs
p,q are complete iff s < d

p , or if q = 1 when s = d
p .

• W s,p(Rd
+),Bs

p,q(Rd
+) have both a trace theorems s > 1

p or

q = 1 when s = 1
p ,

‖u‖
W

s− 1
p ,p(Rd−1)

. ‖u‖W s,p(Rd
+) , ‖u‖

B
s− 1

p
p,q (Rd−1)

. ‖u‖Bs
p,q(Rd

+)

still true for Ẇ s,p(Rd
+),Ḃs

p,q(Rd
+) with above exponents

conditions (completness & trace theorem).
• ν = −ed being Rd

+’s exterior normal, we may define

Ḃs
p,q,D(Rd

+) := { u ∈ Ḃs
p,q(Rd

+) | u(·, 0) = 0 in Ḃ
s− 1

p
p,q (Rd−1) }

Ḃs
p,q,N (Rd

+) := { u ∈ Ḃs
p,q(Rd

+) | ∂xdu(·, 0) = 0 in Ḃ
s−1− 1

p
p,q (Rd−1) }.

for s (resp. s − 1) satisfying previous conditions.
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Set W 2,p
D := W 1,p

0 ∩W 2,p, Ẇ 2,p
D := W 2,p

D
‖·‖Ẇ 2,p

,

W 2,p
N = {u ∈W 2,p | ∂νu = 0}, Ẇ 2,p

N := W 2,p
N
‖·‖Ẇ 2,p

.

Questions.

• 1) Is it true that (Lp(Rd
+), Ẇ 2,p

J (Rd
+))θ,q = Ḃ2θ

p,q,J (Rd
+) ?

• 2) Is there already some results in this direction ?

• 3) Why investigate such kind of properties ?

Gaudin, Anatole Traces in homogeneous Besov spaces and interpolation



Goal, setting and motivations
Laplacians in homogeneous Besov spaces

Density and interpolation results
An application with the Hodge Laplacian

Extension to differential forms

Set W 2,p
D := W 1,p

0 ∩W 2,p, Ẇ 2,p
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+), Ẇ 2,p

J (Rd
+))θ,q = Ḃ2θ
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Question 3) : Why ? Because of a Da Prato-Grisvard theorem :

Theorem (Danchin, Hieber, Mucha, Tolksdorf - 2020)

If X ∩ D(Ȧ) = D(A), with ”D(Ȧ) = D(A)
‖A·‖

”.
Writing ḊA(θ, q) = (X ,D(Ȧ))θ,q for (θ, q) ∈ (0, 1)× [1,+∞), for
q ∈ [1,+∞), θ ∈ (0, 1

q ), and T ∈ (0,+∞].

For any f ∈ Lq(0,T ;DA(θ, q)), u0 ∈ ḊA(θq, q),
∃!u ∈ C 0([0,T ), ḊA(θq, q)), satisfying

∂tu +Au = f on (0,T ), and u(0, ·) = u0

∃C (θ, q,A) > 0, such that

‖u‖L∞(0,T ;ḊA(θq ,q)) + ‖∂tu‖Lq(0,T ;ḊA(θ,q)) + ‖Au‖Lq(0,T ;ḊA(θ,q))

6 C
(
‖f ‖Lq(0,T ;ḊA(θ,q)) + ‖u0‖ḊA(θq ,q)

)
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Question 2) : Already few results ? Yes, see Davide Guidetti 1991.
Few remarks :

• 1) Only for inhomogeneous Besov spaces Bs
p,q(Ω).

• 2) For Ω, to be Rd
+, or a smooth bounded domain.

• 3) Very general boundary conditions with smooth coefficients
(Lopatinskii-Shapiro boundary conditions).

Guidetti’s strategy : build elliptic regularity/resolvent estimates
involving the desired boundary conditions in Besov spaces to
construct pre-image.
Its general result gives obviously the inhomogeneous counterpart of
the desired result :

Theorem (Guidetti - 1991)

For J ∈ {D,N}, p ∈ (1,+∞), θ ∈ (0, 1), q ∈ [1,+∞],

(Lp(Rd
+),W 2,p

J (Rd
+))θ,q = B2θ

p,q,J (Rd
+).
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Question 1) Is (Lp(Rd
+), Ẇ 2,p

J (Rd
+))θ,q = Ḃ2θ

p,q,J (Rd
+) ? Yes, up to

density argument.

• Indeed, from above theorem, and obvious embeddings we get

(Lp(Rd
+),W 2,p

J (Rd
+))θ,q ↪! (Lp(Rd

+), Ẇ 2,p
J (Rd

+))θ,q

↪! (Lp(Rd
+), Ẇ 2,p(Rd

+))θ,q = Ḃ2θ
p,q(Rd

+),

so by dilation argument

‖u‖Ḃ2θ
p,q(Rd

+) 6 ‖u‖(Lp(Rd
+),Ẇ 2,p

J (Rd
+)))θ,q

. ‖u‖Ḃ2θ
p,q(Rd

+) .

∀u ∈ Lp(Rd
+)∩ Ẇ 2,p

J (Rd
+) = W 2,p

J (Rd
+). Hence it suffices to proves

that W 2,p
J (Rd

+) is dense in Ḃ2θ
p,q,J (Rd

+) when the latter is complete.
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+), Ẇ 2,p(Rd

+))θ,q = Ḃ2θ
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+)∩ Ẇ 2,p

J (Rd
+) = W 2,p

J (Rd
+). Hence it suffices to proves

that W 2,p
J (Rd

+) is dense in Ḃ2θ
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+)∩ Ẇ 2,p

J (Rd
+) = W 2,p

J (Rd
+). Hence it suffices to proves

that W 2,p
J (Rd

+) is dense in Ḃ2θ
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Laplacians in homogeneous Besov spaces

Proposition (G. 2021)

Let p ∈ (1,+∞), q ∈ [1,+∞), s ∈ (− 1
p′ ,

1
p ), ν ∈ (0, π2 ), for all

λ ∈ Σν , for any f ∈ Ḃs
p,q(Rd

+), there exists a unique

u ∈ Ḃs
p,q(Rd

+) ∩ Ḃs+2
p,q,J (Rd

+) such that

λu −∆J u = f in Rd
+,

with estimate

|λ| ‖u‖Ḃs
p,q(Rd

+) + |λ|
1
2 ‖∇u‖Ḃs

p,q(Rd
+) +

∥∥∇2u
∥∥
Ḃs
p,q(Rd

+)
. ‖f ‖Ḃs

p,q(Rd
+) .

{(λI −∆J )−1}λ∈Σν is a family of Banach isomorphisms from
Ḃs
p,q(Rd

+) to Ḃs
p,q(Rd

+) ∩ Ḃs+2
p,q,J (Rd

+).
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Theorem (G. 2021)

Let J ∈ {D,N}, for p ∈ (1,+∞), q ∈ [1,+∞), s ∈ R, the
operator

−∆J : Ḃs
p,q,J (Rd

+) −! Ḃs−2
p,q (Rd

+)

is an isomorphism of Banach spaces whenever

• J = D, 1
p < s < d

p or s = 1
p ,

d
p and q = 1,

• J = N , 1 + 1
p < s < d

p or s = 1 + 1
p ,

d
p and q = 1.
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Proposition (G. 2021)

Let p ∈ (1,+∞), q ∈ [1,+∞), s ∈ (0, 2), we have that

W 2,p
J (Rd

+)
‖·‖

Ḃs
p,q(Rd+)

= Ḃs
p,q,J (Rd

+)

whenever

• J = D, 1
p < s < d

p or s = 1
p ,

d
p and q = 1,

• J = N , 1 + 1
p < s < d

p or s = 1 + 1
p ,

d
p and q = 1.
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Hence

Theorem (G. 2021)

For J ∈ {D,N}, p ∈ (1,+∞), θ ∈ (0, 1), q ∈ [1,+∞], with either

• θ ∈ (0, d
2p ), and q ∈ (1,+∞),

• θ ∈ (0, d
2p ], and q = 1,

(Lp(Rd
+), Ẇ 2,p

J (Rd
+))θ,q = Ḃ2θ

p,q,J (Rd
+).
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An application with the Hodge Laplacian

The particular case when d = 3 on 1-forms (vector fields). For
u ∈W 2,p(R3

+,C3),

−∆Hu = curl curl u −∇ div u,

with BC

[u · ν = 0, ν × curl u = 0] or [u × ν = 0, (div u)ν = 0].

In this case (restricted to vector fields),

(Lp,Dp(∆̇H))θ,q = [Ḃ2θ
p,q,D × (Ḃ2θ

p,q,N )2] or [(Ḃ2θ
p,q,D)2 × (Ḃ2θ

p,q,N )].

Gaudin, Anatole Traces in homogeneous Besov spaces and interpolation



Goal, setting and motivations
Laplacians in homogeneous Besov spaces

Density and interpolation results
An application with the Hodge Laplacian

Extension to differential forms

An application with the Hodge Laplacian

The particular case when d = 3 on 1-forms (vector fields). For
u ∈W 2,p(R3

+,C3),

−∆Hu = curl curl u −∇ div u,

with BC

[u · ν = 0, ν × curl u = 0] or [u × ν = 0, (div u)ν = 0].

In this case (restricted to vector fields),

(Lp,Dp(∆̇H))θ,q = [Ḃ2θ
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Extension to differential forms

Let Λ := ΛCR ' C2d being the complex exterior algebra over R,
we define

• X (Rd
+,Λ) for differentials forms whose coefficients are in

X (Rd
+), X ∈ {Ẇ s,p, Ḃs

p,q}.
• ∧ and y are respectively the exterior and interior product.

• d and δ stand for the exterior and interior derivatives.

• All previous results remain true for boundary conditions
u ∧ ν = 0 and ν y u = 0, due to symmetry properties in Rd

+ :

ν ∧ u = 0 ⇐⇒ 2d−1 scalar coordinates uI (·, 0) = 0,

ν y u = 0 ⇐⇒ 2d−1 scalar coordinates uI ′(·, 0) = 0.

it reduces to scalar case.
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+ :

ν ∧ u = 0 ⇐⇒ 2d−1 scalar coordinates uI (·, 0) = 0,

ν y u = 0 ⇐⇒ 2d−1 scalar coordinates uI ′(·, 0) = 0.

it reduces to scalar case.
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• The same goes with both type Hodge boundary conditions :

ν ∧ u = 0, ν y du = 0 ⇐⇒ 2d−1 scalar coordinates uI (·, 0) = 0,

2d−1 scalar coordinates ∂xduI ′(·, 0) = 0,

ν y u = 0, ν ∧ δu = 0 ⇐⇒ 2d−1 scalar coordinates uI ′(·, 0) = 0,

2d−1 scalar coordinates ∂xduI (·, 0) = 0.

• Application : the Hodge Laplacian −∆H = dδ + δd with one of
above BC. Its Lp-domain is Dp(∆H) = (W 2,p

D )2d−1 × (W 2,p
N )2d−1

,
with homogeneous interpolation spaces

(Lp,Dp(∆̇H))θ,q = (Ḃ2θ
p,q,D)2d−1 × (Ḃ2θ

p,q,N )2d−1
.
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Thank you for your attention.
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