Goal, setting and motivations Laplacians in homogeneous Besov spaces Density and interpolation results An application with the Hodge Laplacian Extension to differential forms

Traces in homogeneous Besov spaces and interpolation

Anatole Gaudin

GDR AFHP Besançon, September 2021

Goal, setting and motivations

Definition (Homogeneous Sobolev and Besov spaces)

Let $p,q\in[1,+\infty],\ p\neq 1,\ s\in\mathbb{R},\ k\in\mathbb{N}$, we define homogeneous Besov and Sobolev spaces on \mathbb{R}^d

$$\begin{split} \dot{W}^{k,p}(\mathbb{R}^{d}) &:= \{ u \in \mathcal{S}'_{h}(\mathbb{R}^{d}) \mid \|u\|_{\dot{W}^{k,p}(\mathbb{R}^{d})} < +\infty \}, \\ \dot{B}^{s}_{p,q}(\mathbb{R}^{d}) &:= \{ u \in \mathcal{S}'_{h}(\mathbb{R}^{d}) \mid \|u\|_{\dot{B}^{s}_{p,q}(\mathbb{R}^{d})} < +\infty \}, \\ \|u\|_{\dot{W}^{k,p}(\mathbb{R}^{d})} &:= \|\nabla^{k}u\|_{L^{p}(\mathbb{R}^{d})}, \ \|u\|_{\dot{B}^{s}_{p,q}(\mathbb{R}^{d})} &:= (\sum_{k \in \mathbb{Z}} 2^{qks} \|\Delta_{k}u\|_{L^{p}(\mathbb{R}^{d})}^{q})^{\frac{1}{q}} \end{split}$$

where

$$\mathcal{S}'_h(\mathbb{R}^d) := \{ u \in \mathcal{S}'(\mathbb{R}^d) \mid \Theta(\lambda D) u \xrightarrow[\lambda \to +\infty]{L^{\infty}} 0, \forall \Theta \in C_c^{\infty}(\mathbb{R}^d) \}$$

with $(\Delta_i)_{i\in\mathbb{Z}}$ an homogeneous Littlewood-Paley decomposition.

• We set $\dot{X}(\mathbb{R}^d_+) := \dot{X}(\mathbb{R}^d)_{|_{\mathbb{R}^d_+}}$, where $X \in \{W^{s,p}, \mathcal{B}^s_{p,q}\}$.

- $\bullet \ \ \mathsf{We set} \ \dot{X}(\mathbb{R}^d_+) := \dot{X}(\mathbb{R}^d)_{|_{\mathbb{R}^d_+}} \text{, where } X \in \{W^{s,p}, B^s_{p,q}\}.$
- $\dot{W}^{s,p}, \dot{B}^s_{p,q}$ are complete iff $s < \frac{d}{p}$, or if q = 1 when $s = \frac{d}{p}$.

- $\bullet \ \ \mathsf{We} \ \mathsf{set} \ \dot{X}(\mathbb{R}^d_+) := \dot{X}(\mathbb{R}^d)_{|_{\mathbb{R}^d_+}} \text{, where } X \in \{W^{s,p}, B^s_{p,q}\}.$
- $\dot{W}^{s,p}, \dot{B}^s_{p,q}$ are complete iff $s < \frac{d}{p}$, or if q = 1 when $s = \frac{d}{p}$.
- $W^{s,p}(\mathbb{R}^d_+), B^s_{p,q}(\mathbb{R}^d_+)$ have both a trace theorems $s>\frac{1}{p}$ or q=1 when $s=\frac{1}{p}$,

$$\|u\|_{W^{s-\frac{1}{p},p}(\mathbb{R}^{d-1})} \lesssim \|u\|_{W^{s,p}(\mathbb{R}^d_+)}, \ \|u\|_{B^{s-\frac{1}{p}}_{p,q}(\mathbb{R}^{d-1})} \lesssim \|u\|_{B^s_{p,q}(\mathbb{R}^d_+)}$$

still true for $\dot{W}^{s,p}(\mathbb{R}^d_+), \dot{B}^s_{p,q}(\mathbb{R}^d_+)$ with above exponents conditions (completness & trace theorem).

- $\bullet \ \ \mathsf{We} \ \mathsf{set} \ \dot{X}(\mathbb{R}^d_+) := \dot{X}(\mathbb{R}^d)_{|_{\mathbb{R}^d_+}} \text{, where } X \in \{W^{s,p}, B^s_{p,q}\}.$
- $\dot{W}^{s,p}, \dot{B}^s_{p,q}$ are complete iff $s < \frac{d}{p}$, or if q = 1 when $s = \frac{d}{p}$.
- $W^{s,p}(\mathbb{R}^d_+), B^s_{p,q}(\mathbb{R}^d_+)$ have both a trace theorems $s>\frac{1}{p}$ or q=1 when $s=\frac{1}{p}$,

$$\|u\|_{W^{s-\frac{1}{p},p}(\mathbb{R}^{d-1})} \lesssim \|u\|_{W^{s,p}(\mathbb{R}^d_+)}, \ \|u\|_{B^{s-\frac{1}{p}}_{p,q}(\mathbb{R}^{d-1})} \lesssim \|u\|_{B^s_{p,q}(\mathbb{R}^d_+)}$$

still true for $\dot{W}^{s,p}(\mathbb{R}^d_+), \dot{B}^s_{p,q}(\mathbb{R}^d_+)$ with above exponents conditions (completness & trace theorem).

ullet $u=-{\mathfrak e}_d$ being ${\mathbb R}^d_+$'s exterior normal, we may define

$$\dot{B}^{s}_{p,q,\mathcal{D}}(\mathbb{R}^{d}_{+}) := \{ u \in \dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+}) \mid u(\cdot,0) = 0 \text{ in } \dot{B}^{s-\frac{1}{p}}_{p,q}(\mathbb{R}^{d-1}) \}
\dot{B}^{s}_{p,q,\mathcal{N}}(\mathbb{R}^{d}_{+}) := \{ u \in \dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+}) \mid \partial_{x_{d}}u(\cdot,0) = 0 \text{ in } \dot{B}^{s-1-\frac{1}{p}}_{p,q}(\mathbb{R}^{d-1}) \}.$$
for s (resp. $s-1$) satisfying previous conditions.

Set
$$W_{\mathcal{D}}^{2,p} := W_0^{1,p} \cap W^{2,p}, \ \dot{W}_{\mathcal{D}}^{2,p} := \overline{W_{\mathcal{D}}^{2,p}}^{\|\cdot\|_{\dot{W}^{2,p}}}, \ W_{\mathcal{N}}^{2,p} = \{u \in W^{2,p} \mid \partial_{\nu} u = 0\}, \ \dot{W}_{\mathcal{N}}^{2,p} := \overline{W_{\mathcal{N}}^{2,p}}^{\|\cdot\|_{\dot{W}^{2,p}}}.$$

Set
$$W_{\mathcal{D}}^{2,p} := W_0^{1,p} \cap W^{2,p}, \ \dot{W}_{\mathcal{D}}^{2,p} := \overline{W_{\mathcal{D}}^{2,p}}^{\|\cdot\|_{\dot{W}^{2,p}}}, \ W_{\mathcal{N}}^{2,p} = \{u \in W^{2,p} \mid \partial_{\nu} u = 0\}, \ \dot{W}_{\mathcal{N}}^{2,p} := \overline{W_{\mathcal{N}}^{2,p}}^{\|\cdot\|_{\dot{W}^{2,p}}}.$$
 Questions.

- 1) Is it true that $(L^p(\mathbb{R}^d_+), \dot{\mathcal{W}}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+))_{\theta,q} = \dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$?
- 2) Is there already some results in this direction?

Set
$$W_{\mathcal{D}}^{2,p} := W_0^{1,p} \cap W^{2,p}, \ \dot{W}_{\mathcal{D}}^{2,p} := \overline{W_{\mathcal{D}}^{2,p}}^{\|\cdot\|_{\dot{W}^{2,p}}}, \ W_{\mathcal{N}}^{2,p} = \{u \in W^{2,p} \mid \partial_{\nu} u = 0\}, \ \dot{W}_{\mathcal{N}}^{2,p} := \overline{W_{\mathcal{N}}^{2,p}}^{\|\cdot\|_{\dot{W}^{2,p}}}.$$
 Questions.

- 1) Is it true that $(L^p(\mathbb{R}^d_+), \dot{W}^{2,p}_{\mathcal{I}}(\mathbb{R}^d_+))_{\theta,q} = \dot{B}^{2\theta}_{p,q,\mathcal{I}}(\mathbb{R}^d_+)$?
- 2) Is there already some results in this direction?
- 3) Why investigate such kind of properties?

Question 3): Why? Because of a Da Prato-Grisvard theorem:

Theorem (Danchin, Hieber, Mucha, Tolksdorf - 2020)

If
$$X \cap D(A) = D(A)$$
, with " $D(A) = \overline{D(A)}^{\|A\cdot\|}$ ".

Writing
$$\dot{\mathcal{D}}_{\mathcal{A}}(\theta,q)=(X,D(\dot{\mathcal{A}}))_{\theta,q}$$
 for $(\theta,q)\in(0,1)\times[1,+\infty)$, for $q\in[1,+\infty)$, $\theta\in(0,\frac{1}{q})$, and $T\in(0,+\infty]$.

For any
$$f \in L^q(0, T; \mathcal{D}_{\mathcal{A}}(\theta, q))$$
, $u_0 \in \mathcal{D}_{\mathcal{A}}(\theta_q, q)$,

$$\exists ! u \in C^0([0,T), \dot{\mathbb{D}}_{\mathcal{A}}(\theta_q,q))$$
, satisfying

$$\partial_t u + \mathcal{A}u = f$$
 on $(0, T)$, and $u(0, \cdot) = u_0$

$$\exists C(\theta, q, A) > 0$$
, such that

$$\begin{aligned} \|u\|_{L^{\infty}(0,T;\dot{\mathcal{D}}_{\mathcal{A}}(\theta_{q},q))} + \|\partial_{t}u\|_{L^{q}(0,T;\dot{\mathcal{D}}_{\mathcal{A}}(\theta,q))} + \|\mathcal{A}u\|_{L^{q}(0,T;\dot{\mathcal{D}}_{\mathcal{A}}(\theta,q))} \\ & \leq C\left(\|f\|_{L^{q}(0,T;\dot{\mathcal{D}}_{\mathcal{A}}(\theta,q))} + \|u_{0}\|_{\dot{\mathcal{D}}_{\mathcal{A}}(\theta_{q},q)}\right) \end{aligned}$$

Question 2): Already few results? Yes, see Davide Guidetti 1991. Few remarks:

• 1) Only for inhomogeneous Besov spaces $B_{p,q}^s(\Omega)$.

Question 2): Already few results? Yes, see Davide Guidetti 1991. Few remarks:

- 1) Only for inhomogeneous Besov spaces $B_{p,q}^s(\Omega)$.
- 2) For Ω , to be \mathbb{R}^d_+ , or a smooth bounded domain.

Guidetti's strategy: build elliptic regularity/resolvent estimates involving the desired boundary conditions in Besov spaces to construct pre-image.

Question 2): Already few results? Yes, see Davide Guidetti 1991.

- 1) Only for inhomogeneous Besov spaces $B_{p,q}^s(\Omega)$.
- 2) For Ω , to be \mathbb{R}^d_+ , or a smooth bounded domain.
- 3) Very general boundary conditions with smooth coefficients (Lopatinskii-Shapiro boundary conditions).

Guidetti's strategy: build elliptic regularity/resolvent estimates involving the desired boundary conditions in Besov spaces to construct pre-image.

Its general result gives obviously the inhomogeneous counterpart of the desired result :

Theorem (Guidetti - 1991)

For
$$\mathcal{J} \in \{\mathcal{D}, \mathcal{N}\}$$
, $p \in (1, +\infty)$, $\theta \in (0, 1)$, $q \in [1, +\infty]$,

$$(L^{p}(\mathbb{R}^{d}_{+}), W^{2,p}_{\mathcal{I}}(\mathbb{R}^{d}_{+}))_{\theta,q} = B^{2\theta}_{p,q,\mathcal{I}}(\mathbb{R}^{d}_{+}).$$

Goal, setting and motivations Laplacians in homogeneous Besov spaces Density and interpolation results An application with the Hodge Laplacian Extension to differential forms

Question 1) Is $(L^p(\mathbb{R}^d_+), \dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+))_{\theta,q} = \dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$? Yes, up to density argument.

Question 1) Is $(L^p(\mathbb{R}^d_+), \dot{\mathcal{W}}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+))_{\theta,q} = \dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$? Yes, up to density argument.

• Indeed, from above theorem, and obvious embeddings we get

$$(L^{p}(\mathbb{R}^{d}_{+}), W^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+}))_{\theta,q} \hookrightarrow (L^{p}(\mathbb{R}^{d}_{+}), \dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+}))_{\theta,q}$$
$$\hookrightarrow (L^{p}(\mathbb{R}^{d}_{+}), \dot{W}^{2,p}(\mathbb{R}^{d}_{+}))_{\theta,q} = \dot{B}^{2\theta}_{p,q}(\mathbb{R}^{d}_{+}),$$

Question 1) Is $(L^p(\mathbb{R}^d_+), \dot{\mathcal{W}}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+))_{\theta,q} = \dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$? Yes, up to density argument.

• Indeed, from above theorem, and obvious embeddings we get

$$(L^{p}(\mathbb{R}^{d}_{+}), W^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+}))_{\theta,q} \hookrightarrow (L^{p}(\mathbb{R}^{d}_{+}), \dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+}))_{\theta,q}$$
$$\hookrightarrow (L^{p}(\mathbb{R}^{d}_{+}), \dot{W}^{2,p}(\mathbb{R}^{d}_{+}))_{\theta,q} = \dot{B}^{2\theta}_{p,q}(\mathbb{R}^{d}_{+}),$$

so by dilation argument

$$||u||_{\dot{B}^{2\theta}_{p,q}(\mathbb{R}^{d}_{+})} \leqslant ||u||_{(L^{p}(\mathbb{R}^{d}_{+}),\dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+})))_{\theta,q}} \lesssim ||u||_{\dot{B}^{2\theta}_{p,q}(\mathbb{R}^{d}_{+})}.$$

 $\forall u \in L^p(\mathbb{R}^d_+) \cap \dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+) = W^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+)$. Hence it suffices to proves that $W^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+)$ is dense in $\dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$ when the latter is complete.

Question 1) Is $(L^p(\mathbb{R}^d_+), \dot{\mathcal{W}}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+))_{\theta,q} = \dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$? Yes, up to density argument.

• Indeed, from above theorem, and obvious embeddings we get

$$(L^{p}(\mathbb{R}^{d}_{+}), W^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+}))_{\theta,q} \hookrightarrow (L^{p}(\mathbb{R}^{d}_{+}), \dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+}))_{\theta,q}$$
$$\hookrightarrow (L^{p}(\mathbb{R}^{d}_{+}), \dot{W}^{2,p}(\mathbb{R}^{d}_{+}))_{\theta,q} = \dot{B}^{2\theta}_{p,q}(\mathbb{R}^{d}_{+}),$$

so by dilation argument

$$||u||_{\dot{B}^{2\theta}_{p,q}(\mathbb{R}^{d}_{+})} \leqslant ||u||_{(L^{p}(\mathbb{R}^{d}_{+}),\dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^{d}_{+})))_{\theta,q}} \lesssim ||u||_{\dot{B}^{2\theta}_{p,q}(\mathbb{R}^{d}_{+})}.$$

 $\forall u \in L^p(\mathbb{R}^d_+) \cap \dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+) = W^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+)$. Hence it suffices to proves that $W^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+)$ is dense in $\dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$ when the latter is complete.

Laplacians in homogeneous Besov spaces

Proposition (G. 2021)

Let
$$p \in (1, +\infty)$$
, $q \in [1, +\infty)$, $s \in (-\frac{1}{p'}, \frac{1}{p})$, $\nu \in (0, \frac{\pi}{2})$, for all $\lambda \in \Sigma_{\nu}$, for any $f \in \dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+})$, there exists a unique $u \in \dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+}) \cap \dot{B}^{s+2}_{p,q,\mathcal{J}}(\mathbb{R}^{d}_{+})$ such that

$$\lambda u - \Delta_{\mathcal{J}} u = f \text{ in } \mathbb{R}^d_+,$$

with estimate

$$\begin{split} |\lambda| \, \|u\|_{\dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+})} + |\lambda|^{\frac{1}{2}} \, \|\nabla u\|_{\dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+})} + \|\nabla^{2}u\|_{\dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+})} \lesssim \|f\|_{\dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+})} \,. \\ \{ (\lambda I - \Delta_{\mathcal{J}})^{-1} \}_{\lambda \in \Sigma_{\nu}} \text{ is a family of Banach isomorphisms from } \\ \dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+}) \text{ to } \dot{B}^{s}_{p,q}(\mathbb{R}^{d}_{+}) \cap \dot{B}^{s+2}_{p,q,\mathcal{J}}(\mathbb{R}^{d}_{+}). \end{split}$$

Theorem (G. 2021)

Let $\mathcal{J} \in \{\mathcal{D}, \mathcal{N}\}$, for $p \in (1, +\infty)$, $q \in [1, +\infty)$, $s \in \mathbb{R}$, the operator

$$-\Delta_{\mathcal{J}}:\dot{B}^{s}_{p,q,\mathcal{J}}(\mathbb{R}^{d}_{+})\longrightarrow\dot{B}^{s-2}_{p,q}(\mathbb{R}^{d}_{+})$$

is an isomorphism of Banach spaces whenever

- $\mathcal{J} = \mathcal{D}$, $\frac{1}{p} < s < \frac{d}{p}$ or $s = \frac{1}{p}$, $\frac{d}{p}$ and q = 1,
- $\mathcal{J} = \mathcal{N}$, $1 + \frac{1}{p} < s < \frac{d}{p}$ or $s = 1 + \frac{1}{p}$, $\frac{d}{p}$ and q = 1.

Density and Interpolation results

Proposition (G. 2021)

Let
$$p \in (1, +\infty)$$
, $q \in [1, +\infty)$, $s \in (0, 2)$, we have that

$$\overline{W^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+)}^{\|\cdot\|_{\dot{B}^s_{p,q}(\mathbb{R}^d_+)}} = \dot{B}^s_{p,q,\mathcal{J}}(\mathbb{R}^d_+)$$

whenever

•
$$\mathcal{J} = \mathcal{D}$$
, $\frac{1}{p} < s < \frac{d}{p}$ or $s = \frac{1}{p}$, $\frac{d}{p}$ and $q = 1$,

•
$$\mathcal{J} = \mathcal{N}$$
, $1 + \frac{1}{p} < s < \frac{d}{p}$ or $s = 1 + \frac{1}{p}$, $\frac{d}{p}$ and $q = 1$.

Hence

Theorem (G. 2021)

For $\mathcal{J} \in \{\mathcal{D}, \mathcal{N}\}$, $p \in (1, +\infty)$, $\theta \in (0, 1)$, $q \in [1, +\infty]$, with either

- $\theta \in (0, \frac{d}{2p})$, and $q \in (1, +\infty)$,
- $\theta \in (0, \frac{d}{2p}]$, and q = 1,

$$(\mathrm{L}^p(\mathbb{R}^d_+),\dot{W}^{2,p}_{\mathcal{J}}(\mathbb{R}^d_+))_{\theta,q}=\dot{B}^{2\theta}_{p,q,\mathcal{J}}(\mathbb{R}^d_+).$$

An application with the Hodge Laplacian

The particular case when d=3 on 1-forms (vector fields). For $u \in W^{2,p}(\mathbb{R}^3_+,\mathbb{C}^3)$,

$$-\Delta_{\mathcal{H}}u = \text{curl curl } u - \nabla \text{ div } u,$$

with BC

$$[u \cdot \nu = 0, \ \nu \times \text{curl } u = 0] \text{ or } [u \times \nu = 0, \ (\text{div } u)\nu = 0].$$

An application with the Hodge Laplacian

The particular case when d=3 on 1-forms (vector fields). For $u \in W^{2,p}(\mathbb{R}^3_+,\mathbb{C}^3)$,

$$-\Delta_{\mathcal{H}}u = \text{curl curl } u - \nabla \text{ div } u,$$

with BC

$$[u \cdot \nu = 0, \ \nu \times \text{curl } u = 0] \text{ or } [u \times \nu = 0, \ (\text{div } u)\nu = 0].$$

In this case (restricted to vector fields),

$$(\mathrm{L}^p,\mathrm{D}_p(\dot{\Delta}_{\mathcal{H}}))_{\theta,q} = [\dot{B}^{2\theta}_{p,q,\mathcal{D}} \times (\dot{B}^{2\theta}_{p,q,\mathcal{N}})^2] \text{ or } [(\dot{B}^{2\theta}_{p,q,\mathcal{D}})^2 \times (\dot{B}^{2\theta}_{p,q,\mathcal{N}})].$$

Extension to differential forms

Let $\Lambda:=\Lambda_{\mathbb C}\mathbb R\simeq\mathbb C^{2^d}$ being the complex exterior algebra over $\mathbb R$, we define

- $X(\mathbb{R}^d_+, \Lambda)$ for differentials forms whose coefficients are in $X(\mathbb{R}^d_+)$, $X \in \{\dot{W}^{s,p}, \dot{B}^s_{p,q}\}$.
- ∧ and ¬ are respectively the exterior and interior product.
- d and δ stand for the exterior and interior derivatives.

Extension to differential forms

Let $\Lambda:=\Lambda_{\mathbb C}\mathbb R\simeq\mathbb C^{2^d}$ being the complex exterior algebra over $\mathbb R$, we define

- $X(\mathbb{R}^d_+, \Lambda)$ for differentials forms whose coefficients are in $X(\mathbb{R}^d_+)$, $X \in \{\dot{W}^{s,p}, \dot{B}^s_{p,q}\}$.
- ∧ and ¬ are respectively the exterior and interior product.
- ullet d and δ stand for the exterior and interior derivatives.
- All previous results remain true for boundary conditions $u \wedge \nu = 0$ and $\nu \,\lrcorner\, u = 0$, due to symmetry properties in \mathbb{R}^d_+ :

$$\nu \wedge u = 0 \iff 2^{d-1}$$
 scalar coordinates $u_l(\cdot, 0) = 0$, $\nu \, \lrcorner \, u = 0 \iff 2^{d-1}$ scalar coordinates $u_{l'}(\cdot, 0) = 0$.

it reduces to scalar case.

The same goes with both type Hodge boundary conditions :

$$u \wedge u = 0, \nu \, \lrcorner \, \mathrm{d}u = 0 \iff 2^{d-1} \text{ scalar coordinates } u_I(\cdot,0) = 0,$$

$$2^{d-1} \text{ scalar coordinates } \partial_{x_d} u_{I'}(\cdot,0) = 0,$$

$$\nu \, \lrcorner \, u = 0, \nu \wedge \delta u = 0 \iff 2^{d-1} \text{ scalar coordinates } u_{I'}(\cdot,0) = 0,$$

$$2^{d-1} \text{ scalar coordinates } \partial_{x_d} u_I(\cdot,0) = 0.$$

• Application : the Hodge Laplacian $-\Delta_{\mathcal{H}} = d\delta + \delta d$ with one of above BC. Its L^p -domain is $D_p(\Delta_{\mathcal{H}}) = (W^{2,p}_{\mathcal{D}})^{2^{d-1}} \times (W^{2,p}_{\mathcal{N}})^{2^{d-1}}$, with homogeneous interpolation spaces

$$(\mathrm{L}^p,\mathrm{D}_p(\dot{\Delta}_{\mathcal{H}}))_{\theta,q}=(\dot{B}^{2\theta}_{p,q,\mathcal{D}})^{2^{d-1}}\times(\dot{B}^{2\theta}_{p,q,\mathcal{N}})^{2^{d-1}}.$$

Goal, setting and motivations Laplacians in homogeneous Besov spaces Density and interpolation results An application with the Hodge Laplacian Extension to differential forms

Thank you for your attention.