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Universality

In the most general setting, the following definition of universality
has been suggested:

Definition

Let X ,Y be topological spaces and Ti : X → Y (i ∈ I ) a family of
continuous mappings. An element x is called universal for the
family {Ti}i∈I if the set {Ti (x) | i ∈ I} is dense in Y .

We observe universal behaviour in many function spaces. The first
instance of universality was recorded by M. Fekete in 1914, and
since then many more examples of universal objects have been
found.
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Universality

A typical example is the following, given by F. Bayart. We need
the following definition:

Definition

Let ω : [0, 1)→ [0,+∞) be a growth rate (ω(r) ↑ +∞). The
space Hω(D) is the space of holomorphic functions f (z) defined on
the unit disc D ⊂ C that satisfy:

supz∈D
|f (z)|
ω(|z|) <∞;

limr→1 max|z|=r
|f (z)|
ω(|z|) = 0.

Universal Radial Limits, Bayart, 2004

The set of functions f ∈ Hω(D) such that, given any measurable
function φ on ∂D, there exists a sequence 0 < rj < rj+1 < 1 ∀j
with limj→∞ rj = 1 with:
limj→∞ f (rjξ) = φ(ξ), for almost every ξ ∈ ∂D,
is Gδ-dense in Hω(D) .
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Notation and Basic Definitions

Tree

A connected, locally finite, countable graph,without non-trivial
loops. We shall denote both the tree and it’s vertex set by T .

For each x , y ∈ T there exists a unique path {z0, z1, . . . , zn}
of length n such that z0 = x , zn = y and zk ∼ zk+1 ∀ k < n.
Call it geodesic path [x , y ]. The length n is a metric on T.

Fix a reference vertex o ∈ T called the origin. We obtain a
partial ordering: x ≤ y ⇔ x ∈ [o, y ].

Each x 6= o has a unique neighbour y ≥ x , called the parent
of x , and it is denoted by x−. We shall assume that x has at
least two other neighbours, which we call the children.

Denote be Tn the set of all vertices at distance n from the
origin. Tn can be thought of as the circle of radius n, centred
at the origin. We call that the n-level of the tree.
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Notation and Basic Definitions

The space CT , of complex valued functions on the tree, is
equipped with the product topology, which can be given by the
following metric:

ρ(f , g) =
∞∑
j=0

1

2j
|f (xj)− g(xj)|

1 + |f (xj)− g(xj)|
,

where {xj}∞j=0 is an arbitrary, but fixed, enumeration of the tree.

Topology is the same regardless the enumeration.

(CT , ρ) is a complete metric space, and metric is equivalent
to pointwise convergence.
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Notation and Basic Definitions

Boundary of the Tree

The boundary is defined as the set of all infinite geodesic paths
e = (o = e0, e1, . . . , en . . .) starting from the origin o. It is denoted
by ∂T .

For x ∈ T define the boundary sector Bx ⊂ ∂T as the set of
all e ∈ ∂T s.t. x ∈ e.

The sets {Bx}x∈T form the open basis of a topology on ∂T .
With that topology ∂T is compact and totally disconnected.

The sets {Bx}x∈Tn generate a σ-algebra, Mn on ∂T . That
sequence is nested: Mn ⊂Mn+1

These σ-algebras Mn, generate the Borel σ-algebra on ∂T ,
namely M := σ(

⋃∞
n=0Mn).
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Harmonic functions and Martingales

Consider a set of transition probabilities Q on the set of
neighbours of the tree that satisfies:

∑
y∼x

q(x , y) = 1 ∀ x , y ∈ T , q(x , y) > 0 for y ≥ x and q(x , x−) = 0.

A function f : T → C is said to be Q-harmonic if it satisfies:∑
y∼x

q(x , y)f (y) = f (x) , ∀x ∈ T .

The set of all these functions is denoted by HQ(T ) and it is a
closed linear subspace of CT , therefore a complete metric space.
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Harmonic functions and Martingales

Such an operator induces a probability measure on the boundary of
the tree in the following way:

Define the probability of Bx as p(Bx) =
∏n−1

k=0 q(xk , xk+1)
where x0 = o, xn = x and xk ≤ xk+1.

Extend these to measures Pn on Mn by using the fact that
{Bx}x∈Tn is a finite partition of Mn and

∑
y∼x q(x , y) = 1.

Finally using an extension theorem we deduce the existence of
a probability measure P on M that satisfies P

∣∣
Mn

= Pn.
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Harmonic functions and Martingales

Functions f on the tree can be ”lifted” to the boundary, by
defining a sequence ωn(f ) : ∂T → C, ωn(f )(e) = f (en)
This sequence satisfies the following:

ωn(f ) is constant on each Bx for x ∈ Tn therefore ωn(f ) is
Mn-measurable, hence M-measurable.

If f is Q-harmonic, then {ωn(f )}∞n=1 is a martingale, i.e.
E[ωn+1(f )|Mn] = ωn(f ), ∀n ∈ N.

Similarly, a function h on the boundary that is Mn measurable,
defines a function πn(h) on Tn by setting πn(h)(x) = h(Bx),
therefore a sequence hn of Mn-measurable functions, defines a
function on the whole tree. If hn forms a martingale, the
corresponding function on the tree is harmonic.

Harmonic functions on the tree are in one to one correspondence
with martingales on the boundary.
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Harmonic Functions and Martingales

Remark 1

The sequence ωn(f ) takes on the sets Bx , x ∈ Tn the same values
as f does on Tn. In that sense ωn(f ) can be seen as the restriction
of f on the circle of radius n.

On the space of M-measurable functions we consider the topology
of convergence in measure. This topology can be given by the
following metric:

d(h, g) =

∫
∂T

|h − g |
1 + |h − g |

dP.
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Universal Harmonic Functions

Definition

A function f ∈ HQ(T ) is said to be universal if for every
M-measurable function h on ∂T there exists a sequence
{λn}∞n=1 ⊂ N such that {ωλn(f )}∞n=1 converges to h in measure.
Their set is denoted by U(T ).

Remark 2

Since convergence in measure implies a.e. convergence of a
subsequence, and since a.e. convergence implies convergence in
measure, we have that the above definition is equivalent to
demanding that a subsequence of ωn(f ) converges to h a.e.
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First Results

Theorem 1, Abakoumov, Nestoridis, Picardello

The class U(T ) is Gδ and dense in HQ(T ).

The proof relies on a Baire Category Theorem argument.
Step 1 : U(T ) is a Gδ set.

There exists a dense sequence {hj}∞j=1, of functions defined on the
boundary, such that each hj is Mn(j)-measurable, for some n(j).

Define the sets: E (n, j , s) = {f ∈ HQ(T ) | d(ωn(f ), hj) <
1
s }

where: n = 0, 1, . . . j , s = 1, 2, . . . and d is the metric inducing the
topology of convergence in measure. Next it can be seen that:

U(T ) =
∞⋂
j=1

∞⋂
s=1

∞⋃
n=1

E (n, j , s).
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First Results

The sets
⋃∞

n=1 E (n, j , s) are open for every j , s, and as such, the
set U(T ) is a Gδ set.

Step 2 : The sets
⋃∞

n=1 E (n, j , s) are dense in HQ(T ) for every j , s.

This is the most technical part of the proof. The idea is the
following. Fix a harmonic function ϕ that we wish to approximate.

To approximate ϕ appropriately, define f = ϕ up to some level
TN , for N large enough.

Extend f further, until some level TN+K in such a way that it
stays harmonic, and such that f ∈ E (n, j , s) for some n ≥ 1.

Define f on the rest of the tree by setting:
f (z) = f (x) ∀z ≥ x , x ∈ TN+K .
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Frequently Universal Harmonic Functions

We will continue with the study of Frequently universal harmonic
functions.

Definition

The lower density of a A ⊂ {0, 1, . . .} is defined as:

d(A) := lim inf
n→∞

card({m ∈ A |m ≤ n})
n + 1

Similarly we define the upper density of a set as the lim sup of the
same quantity.

Definition

A function f ∈ HQ(T ) is called frequently universal if for every
non-void, open set V , contained in the set of M-measurable
functions on the boundary, the set {n ∈ N |ωn(f ) ∈ V } has strictly
positive lower density. The set of all frequently universal functions
is denoted by UFM(T ).
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Frequently Universal Harmonic Functions

Theorem 2, Abakoumov, Nestoridis, Picardello

The set UFM(T ) is dense and meager in HQ(T ), i.e. it is dense
and disjoint from a set that is Gδ-dense.

The main part of this proof is about constructing a frequently
universal function. The rest follows by standard arguments.

In order to do so, we start by picking a dense sequence {hn}∞n=1

where each hn is Mn-measurable. Next we define a certain
sequence `n, as follows:

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, . . .
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Frequently Universal Harmonic Functions

That sequence is obtained by taking the exponent of the largest
power of 2 that divides the number n and adding 1. We also need
the sequence rn =

∑n
k=1 `k . The sequence `n visits every natural

number frequently (with a strictly positive lower density).

To construct a frequently harmonic function, we define a function
f in such a way that ωrn(f ) ∈ B(h`n ,

1
2`n

), where B(h, r) is the
open ball centred at h, of radius r . This is done inductively,
following the same extension arguments as in Theorem 1.
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Dense Subspaces

The next step is to talk about a property named Algebraic
genericity. In the case of Universal martingales we have the
following result:

Theorem 3, Abakoumov, Nestoridis, Picardello

The set U(T ) ∪ {0} contains a dense vector space.

The proof of this theorem relies on the fact that Theorem 1, holds
in a slightly more general setting. It is possible to construct
universal functions such that the subsequences ωλn can all be
chosen in a way that all λn are contained in a fixed, infinite, τ ⊂ N.
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Dense Subspaces

Theorem 4, Biehler, Nestoridis, Stavrianidi

The set UFM(T ) ∪ {0} contains a dense vector space.

There is no direct way to prove that the sum of two frequently
universal functions is also frequently universal. Solution: Go to
higher dimension!

We can consider the space HQ(T ,CN) of harmonic functions on
the tree, with values in CN. By considering a frequently universal
functions in HQ(T ,CN) it is possible to prove that for a frequently
universal function f = (f1, f2, . . . , fn, . . .), each of the fn is
frequently universal in HQ(T ,C), and more importantly,
span{fn | n ∈ N} is contained in HQ(T ,C)
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Dense Subspaces

In fact it is preferable to replace the space CN with an arbitrary
separable, Fréchet space E and work with functions that take
calues in CE . This space will have all the nice properties that
enable the previous proofs to work. After establishing the
necessary results, like Theorems 1,2,3 for this new space, we can
proceed as mentioned above.

The final part of the proof boils down to finding a frequently
universal function f = (f1, f2, . . . , fn, . . .) such that {fn}∞n=1 is
dense in HQ .

Combining these results, we obtain a dense linear space of
frequently universal harmonic functions.
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Thank you for your attention!

On Universal Harmonic Functions on Trees


