Functional calculus for submarkovian semigroups

 on weighted L^{2} spacesChristoph Kriegler (Clermont-Ferrand, France), joint work with
Komla Domelevo and Stefanie Petermichl (Würzburg, Germany)

GDR AFHP Besançon, France - September 2021

c_{0}-semigroups

Definition: c_{0}-semigroups

Let X be a Banach space. Let $\left(T_{t}\right)_{t \geq 0}$ be a family of bounded linear operators $X \rightarrow X$. Then $\left(T_{t}\right)_{t \geq 0}$ is called a c_{0}-semigroup if

1. $T_{0}=\mathrm{Id}_{X}$,
2. $T_{t+s}=T_{t} \circ T_{s}$ for any $t, s \geq 0$,
3. $T_{t} x \rightarrow x$ as $t \rightarrow 0+$ for any $x \in X$.

Fact:

Any c_{0}-semigroup is uniquely determined by its generator A, where

$$
A x=\lim _{t \rightarrow 0+} \frac{1}{t}\left(\operatorname{ld}_{x}-T_{t}\right) x
$$

with domain $D(A)=\{x \in X$: the above limit exists $\}$.
A is always closed and densely defined.

From Fourier multipliers to spectral multipliers

E.g. $A=-\Delta$ on $X=L^{p}\left(\mathbb{R}^{d}\right)$ for some $1<p<\infty$. Then $\left(T_{t}\right)_{t}$ is the classical heat semigroup.
For $m:(0, \infty) \rightarrow \mathbb{C}$, have operator $m(A)=m(-\Delta)$, Fourier multiplier with symbol $m\left(|\xi|^{2}\right)$.
In particular, if $m_{t}(\lambda)=e^{-t \lambda}$, then $m_{t}(-\Delta)=T_{t}$, i.e. one recovers the semigroup.
Other semigroups? How to define $m(A)$?
If for $m:(0, \infty) \rightarrow \mathbb{C}$ there exists $\beta:(0, \infty) \rightarrow \mathbb{C}$ such that

$$
m(\lambda)=\int_{0}^{\infty} \beta(t) \lambda e^{-\lambda t} d t \quad(\lambda>0)
$$

then formally

$$
m(A)=\int_{0}^{\infty} \beta(t) A T_{t} d t
$$

The H^{∞} class

Definition: Sector and H^{∞} class
Let $\omega \in(0, \pi)$ be an angle. Define the sector

$$
\Sigma_{\omega}:=\{\lambda \in \mathbb{C} \backslash\{0\}:|\arg \lambda|<\omega\}
$$

Define moreover

$$
\begin{array}{r}
H^{\infty}\left(\Sigma_{\omega}\right)=\left\{m: \Sigma_{\omega} \rightarrow \mathbb{C}: m\right. \text { analytic and } \\
\left.\|m\|_{\infty, \omega}:=\sup _{\lambda \in \Sigma_{\omega}}|m(\lambda)|<\infty\right\} .
\end{array}
$$

The class $m \in H^{\infty}\left(\Sigma_{\omega}\right)$ is often appropriate to define $m(A) \in B(X)$.

Construction of the H^{∞} calculus

Fact [Cowling Doust McIntosh Yagi 1996]
Let $\theta>\frac{\pi}{2}$ and $m \in H^{\infty}\left(\Sigma_{\theta}\right)$. Then there does exist $\beta \in L^{\infty}\left(\mathbb{R}_{+}\right)$ such that $\|\beta\|_{L_{(}\left(\mathbb{R}_{+}\right)} \leq C\|m\|_{\infty, \theta}$ and

$$
m(\lambda)=\int_{0}^{\infty} \beta(t) \lambda e^{-\lambda t} d t \quad(\lambda>0)
$$

So if

$$
\int_{0}^{\infty}\left|\left\langle A T_{t} f, g\right\rangle\right| d t \leq C\|f\|_{X}\|g\|_{X^{*}}
$$

then for

$$
\langle m(A) f, g\rangle:=\int_{0}^{\infty} \beta(t)\left\langle A T_{t} f, g\right\rangle d t
$$

we have

$$
|\langle m(A) f, g\rangle| \leq C\|\beta\|_{\infty}\|f\|_{X}\|g\|_{X^{*}} \leq C^{\prime}\|m\|_{\infty, \theta}\|f\|_{X}\|g\|_{X^{*}} .
$$

Thus, $m(A)$ defines a bounded operator on X for any $m \in H^{\infty}\left(\Sigma_{\theta}\right)$.

The H^{∞} calculus

Definition: H^{∞} calculus
Let A be a semigroup generator and $\theta \in(0, \pi)$. Then A has a (bounded) $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus if

$$
\|m(A)\|_{B(X)} \leq C\|m\|_{\infty, \theta}
$$

for any $m \in H^{\infty}\left(\Sigma_{\theta}\right)$.
If θ becomes smaller, then the $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus becomes a stronger statement.
If $\theta<\frac{\pi}{2}$ and $z \in \Sigma_{\frac{\pi}{2}-\theta}$, then $m_{z}: \lambda \mapsto e^{-z \lambda} \in H^{\infty}\left(\Sigma_{\theta}\right)$.
Thus if A has $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus, then $T_{z}=m_{z}(A)=e^{-z A}$ is a well-defined analytic semigroup.

Weak square function for smaller angles

Question: How to obtain $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus for smaller (i.e. better) angles $\theta<\frac{\pi}{2}$?
Proposition [Cowling Doust McIntosh Yagi 1996]
Let $\theta \in\left(0, \frac{\pi}{2}\right)$ and $\phi \in\left(\frac{\pi}{2}-\theta, \frac{\pi}{2}\right)$.
If $\left(T_{z}\right)_{z \in \Sigma_{\phi}}$ is an analytic semigroup and

$$
\int_{0}^{\infty}\left|\left\langle A T_{e^{ \pm i \phi} t} f, g\right\rangle\right| d t \leq C\|f\|_{X}\|g\|_{X^{*}}
$$

then A has a bounded $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus.

Consequences of H^{∞} calculus

1. A has $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus on $X=L^{p}$-space \Longrightarrow Paley-Littlewood decomposition

$$
\|x\|_{p} \cong\left\|\left(\sum_{n \in \mathbb{Z}}\left|\psi\left(2^{n} A\right) x\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}
$$

2. A has $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus for $\theta<\frac{\pi}{2}$ and $X=L^{p}$-space \Longrightarrow the evolution equation associated with A has maximal regularity:

$$
\begin{cases}\frac{\partial}{\partial t} y(t)+A y(t) & =f(t) \\ y(0) & =0\end{cases}
$$

Classes of c_{0}-semigroups

Definition: (Sub)markovian semigroups
Let (Ω, μ) be a σ-finite measure space. Let $\left(T_{t}\right)_{t \geq 0}$ be a c_{0}-semigroup on $L^{2}(\Omega)$. Consider the conditions

1. T_{t} is self-adjoint on $L^{2}(\Omega)$ for any $t \geq 0$.
2. $\left\|T_{t}\right\|_{p \rightarrow p} \leq 1$ for any $t \geq 0$ and any $1 \leq p \leq \infty$.
3. $T_{t}(f) \geq 0$ for any $f \in L^{2}(\Omega)$ such that $f \geq 0$.
4. $T_{t}(1)=1$.
(1)-(2): semigroup of symmetric contractions. In this case, have contractive c_{0}-semigroup $\left(T_{t}\right)_{t}$ acting on $L^{p}(\Omega), 1 \leq p<\infty$.
(1)-(3): submarkovian semigroup.
(1)-(4): markovian semigroup.

H^{∞} functional calculus

Theorem [Stein 1970, Cowling 1983, Meda 1990]
Let $1<p<\infty$.
Let $\left(T_{t}\right)_{t}$ be a semigroup of symmetric contractions acting on $L^{p}(\Omega)$.
Let $\theta>\pi\left|\frac{1}{p}-\frac{1}{2}\right|$.
Then A has an $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus.

Optimal angle of H^{∞} functional calculus

Theorem [Carbonaro-Dragičević 2017]
Let $1<p<\infty$.
Let $\left(T_{t}\right)_{t}$ be a semigroup of symmetric contractions acting on $L^{p}(\Omega)$.
Let $\theta>\theta_{p}=\arcsin \left|1-\frac{2}{p}\right|$.
Then A has $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus.
The angle θ_{p} is essentially optimal: If $\left(T_{t}\right)_{t}$ is the
Ornstein-Uhlenbeck semigroup, then false for any $\theta<\theta_{p}$.

Proof of Carbonaro-Dragičević's Theorem

Elements of proof: By [Cowling Doust McIntosh Yagi], it suffices to estimate for angle $|\phi|<\frac{\pi}{2}-\theta_{p}$,
$\int_{0}^{\infty}\left|\left\langle A T_{t e^{i \phi}} f, T_{t e^{-i \phi}} g\right\rangle\right| d t \leq C\|f\|_{p}\|g\|_{p^{*}} \quad\left(f \in L^{p}(\Omega), g \in L^{p^{*}}(\Omega)\right)$.
Introduce the functional $\mathcal{E}: \mathbb{R}_{+} \rightarrow \mathbb{R}$,

$$
\mathcal{E}(t)=\int_{\Omega} B\left(T_{t e^{i \phi}}(f)(x), T_{t e^{-i \phi}}(g)(x)\right) d \mu(x)
$$

where $B: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R}$ determined later.

Proof of optimal H^{∞} calculus continued

Want to put $-\mathcal{E}^{\prime}(t)$ in between the above weak square function estimate. Have

$$
\begin{aligned}
-\mathcal{E}^{\prime}(t) & =\Re \int_{\Omega} e^{i \phi}\left(A T_{t e^{i \phi} f} f\right) \partial_{1} B\left(T_{t e^{i \phi} \phi}(f), T_{t e^{-i \phi}}(g)\right) \\
& +e^{-i \phi}\left(A T_{t e^{-i \phi} \phi}\right) \partial_{2} B\left(T_{t e^{i \phi}}(f), T_{t e^{-i \phi}}(g)\right) d \mu,
\end{aligned}
$$

Lemma

The following are equivalent. There exists a function B such that

$$
\text { 1. }-\mathcal{E}^{\prime}(t) \geq c_{\phi}\left|\left\langle A T_{t e^{i \phi}(}(f), T_{\text {te-i }}(g)\right\rangle\right| \text { for any sgrp. }
$$

2. For $A=\mathcal{G}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ acting on $\Omega=\{a, b\}$, this inequality holds.
3. For $A=\mathcal{G}$ and $t=0$, this inequality holds:

$$
-\mathcal{E}^{\prime}(0) \geq c_{\phi}|\langle\mathcal{G} f, g\rangle|=c_{\phi}|f(a)-f(b)| \cdot|g(a)-g(b)| .
$$

The last condition holds if B satisfies a certain-convexity.

Proof of optimal H^{∞} calculus continued

If we can find such a convex function B, then by the Lemma,

$$
\begin{aligned}
\int_{0}^{\infty}\left|\left\langle A T_{t e^{i \phi}}(f), T_{t e^{-i \phi}}(g)\right\rangle\right| d t & \lesssim-\int_{0}^{\infty} \mathcal{E}^{\prime}(t) d t \\
& =\mathcal{E}(0)-\mathcal{E}(\infty) \\
& \leq \int_{\Omega} B\left(T_{0}(f), T_{0}(g)\right) d \mu-0 \\
& \lesssim \int_{\Omega}|f|^{p}+|g|^{p^{*}} d \mu \\
& =\|f\|_{p}^{p}+\|g\|_{p^{*}}^{p^{*}}
\end{aligned}
$$

provided B takes positive values and $B(x, y) \leq C\left(|x|^{p}+|y|^{p^{*}}\right)$.

Proof of optimal H^{∞} calculus continued

In all we need to find a function B depending on ϕ such that

- B satisfies a certain convexity (depending on ϕ).
- $0 \leq B(x, y) \leq C\left(|x|^{p}+|y|^{p^{*}}\right)$.
- B is everywhere C^{1} and piecewise C^{2}.

Such a function is called Bellman function in view of similar functions for other problems in analysis. Carbonaro-Dragičević found existence of B with all these properties exactly when $|\phi|<\frac{\pi}{2}-\theta_{p}$. One deduces the weak square function estimate.

Weighted L^{p} spaces

Now modify setting. Let (Ω, μ) be a measure space. A measurable function $w: \Omega \rightarrow(0, \infty)$ is called a weight. Have a weighted space $L^{p}(w)=L^{p}(\Omega, w d \mu)$ with
$\|f\|_{L^{p}(w)}=\left(\int_{\Omega}|f(x)|^{p} w(x) d \mu(x)\right)^{\frac{1}{p}}$.
Question: For which weights w and operators T,
$\|T\|_{L^{p}(w) \rightarrow L^{p}(w)}=\left\|M_{w^{\frac{1}{p}}} T M_{w^{-\frac{1}{p}}}\right\|_{L^{p}(\Omega, \mu) \rightarrow L^{p}(\Omega, \mu)}<\infty ?$
Fact: If $\Omega=\mathbb{R}$ and T is the Hilbert transform (singular integral operator), then answer "yes" iff $[w]_{A_{p}}<\infty$, where

$$
[w]_{A_{p}}=\sup _{B}\left(\frac{1}{|B|} \int_{B} w d \mu\right)\left(\frac{1}{|B|} \int_{B} w^{-\frac{p^{*}}{p}} d \mu\right)^{\frac{p}{p^{*}}}
$$

Semigroup weights

Question: What can we say if $T=m(A)$ stems from a semigroup? If $A=-\Delta$ on \mathbb{R}^{d}, then

$$
[w]_{A_{p}} \cong \sup _{t>0} \sup _{x \in \mathbb{R}^{d}} T_{t}(w)(x)\left[T_{t}\left(w^{-\frac{p^{*}}{p}}\right)(x)\right]^{\frac{p}{p^{*}}}=: Q_{p}^{A}(w) .
$$

Take the right hand side as definition of class of weights for a markovian semigroup $\left(T_{t}\right)_{t}$.
Theorem [Domelevo-K.-Petermichl 2021]
Let (Ω, μ) be a σ-finite measure space.
Let $\left(T_{t}\right)_{t}$ be a markovian semigroup.
Fix $\boldsymbol{p}=2$.
Assume some technical conditions.
Let w be a weight such that $Q_{2}^{A}(w)<\infty$. Then A has a $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus on $L^{2}(w)$ for any $\theta>\frac{\pi}{2}$.

Elements of proof

Follow Carbonaro-Dragičević's idea. There is no angle ϕ any more. Want

$$
\int_{0}^{\infty}\left|\left\langle A T_{t} f, T_{t} g\right\rangle\right| d t \leq C\|f\|_{L^{2}(w)}\|g\|_{L^{2}\left(w^{-1}\right)}
$$

Let $Q=Q_{2}^{A}(w)<\infty$. Put

$$
\mathcal{E}(t)=\int_{\Omega} B_{Q}\left(T_{t}(f), T_{t}(g), T_{t}\left(w^{-1}\right), T_{t}(w)\right) d \mu
$$

for some function
$B_{Q}: D\left(B_{Q}\right)=\mathbb{C} \times \mathbb{C} \times\left\{(w, v) \in \mathbb{R}_{+}^{2}: 1 \leq w v \leq Q\right\} \rightarrow \mathbb{R}$ to find.

Proof continued

In order to put $-\mathcal{E}^{\prime}(t)$ into the key inequality, need to find B_{Q} such that

- B_{Q} is defined on domain $D\left(B_{Q}\right)$ depending on Q.
- B_{Q} satisfies a weak convexity (difficulty: $D\left(B_{Q}\right)$ is not convex!).
- $0 \leq B_{Q}(x, y, w, v) \leq C\left(\frac{|x|^{2}}{w}+\frac{|y|^{2}}{v}\right)$.
- B_{Q} and its first derivative satisfy some technical conditions (difficulty: $\mathcal{E}(t)$ is not differentiable at $t=0$).

Variants

Variants of Theorem

1. There exists also a version for submarkovian semigroups with a modified weight characteristic.
2. Also get boundedness of $m(A)$ on $L^{2}(w)$ in case m holomorphic on $\mathbb{C}_{+}=\Sigma_{\frac{\pi}{2}}$ plus regularity of m on boundary $=i \mathbb{R}$.
3. For certain semigroups, can lower the $H^{\infty}\left(\Sigma_{\theta}\right)$ calculus angle to some $\theta=\theta(w)<\frac{\pi}{2}$. Then have bounded semigroup
$\left\|T_{t}\right\|_{L^{2}(w) \rightarrow L^{2}(w)} \leq C$ and maximal regularity.

Extensions: Smaller angle

Theorem [Duong-Sikora-Yan 2011, Gong-Yan 2014]
Let $\left(T_{t}\right)_{t}$ is a self-adjoint semigroup on $L^{2}\left(\mathbb{R}^{d}, d x\right)$ (or more generally on $L^{2}(\Omega, \mu)$ where (Ω, d, μ) is a space of homogeneous type), having an integral kernel p_{t} with Gaussian estimates.
Let $1<p<\infty$ and $\theta \in(0, \pi)$ (small).
Then [Domelevo K. Petermichl] holds, even on $L^{p}(\Omega, w d \mu)$.
Moreover, there is $s>0$ such that

$$
\begin{align*}
\|m(A)\|_{L^{p}(w) \rightarrow L^{p}(w)} \leq & C \theta^{-s}\left(|m(0)|+\|m\|_{\infty, \theta}\right) \tag{1}\\
& \left(\theta \in(0, \pi), m \in H^{\infty}\left(\Sigma_{\theta}\right)\right)
\end{align*}
$$

Negative result on small angle

Theorem [Domelevo K. Petermichl 2021]
There exists a markovian semigroup $\left(T_{t}\right)_{t}$ without Gaussian estimates on some probability space (Ω, μ) and a weight w with $Q_{2}^{A}(w)<\infty$ such that for no $s>0$, (1) holds with $p=2$.

Thank you for your attention

