Functional calculus for submarkovian semigroups on weighted L^2 spaces

Christoph Kriegler (Clermont-Ferrand, France), joint work with Komla Domelevo and Stefanie Petermichl (Würzburg, Germany)

GDR AFHP Besançon, France – September 2021

*c*₀-semigroups

Definition: *c*₀-semigroups

Let X be a Banach space. Let $(T_t)_{t\geq 0}$ be a family of bounded linear operators $X \to X$. Then $(T_t)_{t\geq 0}$ is called a c_0 -semigroup if

1. $T_0 = Id_X$, 2. $T_{t+s} = T_t \circ T_s$ for any $t, s \ge 0$, 3. $T_t x \to x$ as $t \to 0+$ for any $x \in X$.

Fact:

Any c_0 -semigroup is uniquely determined by its generator A, where

$$Ax = \lim_{t \to 0+} \frac{1}{t} (\operatorname{Id}_X - T_t) x$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with domain $D(A) = \{x \in X : \text{ the above limit exists}\}$. A is always closed and densely defined.

From Fourier multipliers to spectral multipliers

E.g. $A = -\Delta$ on $X = L^{p}(\mathbb{R}^{d})$ for some $1 . Then <math>(T_{t})_{t}$ is the classical **heat semigroup**.

For $m: (0, \infty) \to \mathbb{C}$, have operator $m(A) = m(-\Delta)$, Fourier multiplier with symbol $m(|\xi|^2)$.

In particular, if $m_t(\lambda) = e^{-t\lambda}$, then $m_t(-\Delta) = T_t$, i.e. one recovers the semigroup.

Other semigroups? How to define m(A)? If for $m : (0, \infty) \to \mathbb{C}$ there exists $\beta : (0, \infty) \to \mathbb{C}$ such that

$$m(\lambda) = \int_0^\infty eta(t) \lambda e^{-\lambda t} dt \quad (\lambda > 0)$$

then formally

$$m(A)=\int_0^\infty \beta(t)AT_tdt.$$

The H^{∞} class

Definition: Sector and H^{∞} class Let $\omega \in (0, \pi)$ be an angle. Define the sector

$$\Sigma_\omega := \{\lambda \in \mathbb{C} \setminus \{0\} : \ | \arg \lambda | < \omega\}$$

Define moreover

$$H^{\infty}(\Sigma_{\omega}) = \left\{ m : \Sigma_{\omega} o \mathbb{C} : m \text{ analytic and}
ight.$$

 $\left\| m
ight\|_{\infty,\omega} := \sup_{\lambda \in \Sigma_{\omega}} \left| m(\lambda)
ight| < \infty
ight\}.$

The class $m \in H^{\infty}(\Sigma_{\omega})$ is often appropriate to define $m(A) \in B(X)$.

Construction of the H^{∞} calculus

Fact [Cowling Doust McIntosh Yagi 1996]

Let $\theta > \frac{\pi}{2}$ and $m \in H^{\infty}(\Sigma_{\theta})$. Then there does exist $\beta \in L^{\infty}(\mathbb{R}_{+})$ such that $\|\beta\|_{L^{\infty}(\mathbb{R}_{+})} \leq C \|m\|_{\infty,\theta}$ and

$$m(\lambda) = \int_0^\infty \beta(t) \lambda e^{-\lambda t} dt \quad (\lambda > 0).$$

$$\int_0^\infty |\langle AT_t f, g \rangle| dt \leq C \, \|f\|_X \, \|g\|_{X^*} \, ,$$

then for

$$\langle m(A)f,g\rangle := \int_0^\infty \beta(t) \langle AT_tf,g\rangle dt,$$

we have

 $\begin{aligned} |\langle m(A)f,g\rangle| &\leq C \, \|\beta\|_{\infty} \, \|f\|_{X} \, \|g\|_{X^{*}} \leq C' \, \|m\|_{\infty,\theta} \, \|f\|_{X} \, \|g\|_{X^{*}} \, . \end{aligned}$ Thus, m(A) defines a bounded operator on X for any $m \in H^{\infty}(\Sigma_{\theta}).$

The H^{∞} calculus

Definition: H^{∞} calculus

Let A be a semigroup generator and $\theta \in (0, \pi)$. Then A has a (bounded) $H^{\infty}(\Sigma_{\theta})$ calculus if

$$\|m(A)\|_{B(X)} \leq C \|m\|_{\infty,\theta}$$

for any $m \in H^{\infty}(\Sigma_{\theta})$.

If θ becomes smaller, then the $H^{\infty}(\Sigma_{\theta})$ calculus becomes a stronger statement.

If $\theta < \frac{\pi}{2}$ and $z \in \sum_{\frac{\pi}{2}-\theta}$, then $m_z : \lambda \mapsto e^{-z\lambda} \in H^{\infty}(\Sigma_{\theta})$. Thus if A has $H^{\infty}(\Sigma_{\theta})$ calculus, then $T_z = m_z(A) = e^{-zA}$ is a well-defined **analytic semigroup**.

Weak square function for smaller angles

Question: How to obtain $H^{\infty}(\Sigma_{\theta})$ calculus for smaller (i.e. better) angles $\theta < \frac{\pi}{2}$? **Proposition [Cowling Doust McIntosh Yagi 1996]** Let $\theta \in (0, \frac{\pi}{2})$ and $\phi \in (\frac{\pi}{2} - \theta, \frac{\pi}{2})$. If $(T_z)_{z \in \Sigma_{\phi}}$ is an analytic semigroup and $\int_0^{\infty} |\langle AT_{e^{\pm i\phi}t}f, g \rangle| dt \leq C ||f||_X ||g||_{X^*},$

then A has a bounded $H^{\infty}(\Sigma_{\theta})$ calculus.

Consequences of H^{∞} calculus

1. A has $H^{\infty}(\Sigma_{\theta})$ calculus on $X = L^{p}$ -space \implies Paley-Littlewood decomposition

$$\|x\|_{p} \cong \left\| \left(\sum_{n \in \mathbb{Z}} |\psi(2^{n}A)x|^{2} \right)^{\frac{1}{2}} \right\|_{p}$$

2. A has $H^{\infty}(\Sigma_{\theta})$ calculus for $\theta < \frac{\pi}{2}$ and $X = L^{p}$ -space \Longrightarrow the evolution equation associated with A has maximal regularity:

$$\begin{cases} \frac{\partial}{\partial t}y(t) + Ay(t) &= f(t) \\ y(0) &= 0 \end{cases}$$

Classes of c₀-semigroups

Definition: (Sub)markovian semigroups

Let (Ω, μ) be a σ -finite measure space. Let $(T_t)_{t\geq 0}$ be a c_0 -semigroup on $L^2(\Omega)$. Consider the conditions

1. T_t is self-adjoint on $L^2(\Omega)$ for any $t \ge 0$.

2.
$$\|T_t\|_{p \to p} \leq 1$$
 for any $t \geq 0$ and any $1 \leq p \leq \infty$.

- 3. $T_t(f) \ge 0$ for any $f \in L^2(\Omega)$ such that $f \ge 0$.
- 4. $T_t(1) = 1$.

(1)-(2): semigroup of symmetric contractions. In this case, have contractive c_0 -semigroup $(T_t)_t$ acting on $L^p(\Omega)$, $1 \le p < \infty$. (1)-(3): submarkovian semigroup. (1)-(4): markovian semigroup.

Theorem [Stein 1970, Cowling 1983, Meda 1990]

Let 1 . $Let <math>(T_t)_t$ be a semigroup of symmetric contractions acting on $L^p(\Omega)$. Let $\theta > \pi \left| \frac{1}{p} - \frac{1}{2} \right|$. Then A has an $H^{\infty}(\Sigma_{\theta})$ calculus.

Optimal angle of H^{∞} functional calculus

Theorem [Carbonaro-Dragičević 2017]

Let 1 .

Let $(T_t)_t$ be a semigroup of symmetric contractions acting on $L^p(\Omega)$.

Let
$$\theta > \theta_p = \arcsin \left| 1 - \frac{2}{p} \right|$$
.

Then A has $H^{\infty}(\Sigma_{\theta})$ calculus.

The angle θ_p is essentially optimal: If $(T_t)_t$ is the Ornstein-Uhlenbeck semigroup, then false for any $\theta < \theta_p$.

Proof of Carbonaro-Dragičević's Theorem

Elements of proof: By [Cowling Doust McIntosh Yagi], it suffices to estimate for angle $|\phi| < \frac{\pi}{2} - \theta_p$,

$$\int_0^\infty |\langle AT_{te^{i\phi}}f, T_{te^{-i\phi}}g\rangle| dt \leq C \|f\|_p \|g\|_{p^*} \quad (f \in L^p(\Omega), g \in L^{p^*}(\Omega)).$$

Introduce the functional $\mathcal{E}:\mathbb{R}_+\rightarrow\mathbb{R}$,

$$\mathcal{E}(t) = \int_{\Omega} B(T_{te^{i\phi}}(f)(x), T_{te^{-i\phi}}(g)(x)) d\mu(x),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $B : \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ determined later.

Proof of optimal H^{∞} calculus continued

Want to put $-\mathcal{E}'(t)$ in between the above weak square function estimate. Have

$$\begin{split} -\mathcal{E}'(t) &= \Re \int_{\Omega} e^{i\phi} (AT_{te^{i\phi}}f) \partial_1 B(T_{te^{i\phi}}(f), T_{te^{-i\phi}}(g)) \\ &+ e^{-i\phi} (AT_{te^{-i\phi}}g) \partial_2 B(T_{te^{i\phi}}(f), T_{te^{-i\phi}}(g)) d\mu, \end{split}$$

Lemma

The following are equivalent. There exists a function B such that ...

$$1. \ -\mathcal{E}'(t) \geq c_\phi \left| \langle A {\mathcal T}_{t e^{i \phi}}(f), \, {\mathcal T}_{t e^{-i \phi}}(g) \rangle \right| \text{ for any sgrp.}$$

2. For
$$A = \mathcal{G} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 acting on $\Omega = \{a, b\}$, this inequality holds.

3. For
$$A = \mathcal{G}$$
 and $t = 0$, this inequality holds:
 $-\mathcal{E}'(0) \ge c_{\phi} |\langle \mathcal{G}f, g \rangle| = c_{\phi} |f(a) - f(b)| \cdot |g(a) - g(b)|.$

The last condition holds if B satisfies a certain convexity. $(a) = 0 \circ 0$

Proof of optimal H^{∞} calculus continued

If we can find such a convex function B, then by the Lemma,

$$egin{aligned} &\int_0^\infty |\langle AT_{te^{-i\phi}}(f), T_{te^{-i\phi}}(g)
angle|\,dt \lesssim -\int_0^\infty \mathcal{E}'(t)dt\ &=\mathcal{E}(0)-\mathcal{E}(\infty)\ &\leq \int_\Omega B(T_0(f), T_0(g))d\mu - 0\ &\lesssim \int_\Omega |f|^p + |g|^{p^*}d\mu\ &= \|f\|_p^p + \|g\|_{p^*}^p \end{aligned}$$

provided B takes positive values and $B(x, y) \leq C(|x|^{p} + |y|^{p^{*}})$.

Proof of optimal H^{∞} calculus continued

In all we need to find a function B depending on ϕ such that

- B satisfies a certain convexity (depending on ϕ).
- $0 \le B(x,y) \le C(|x|^p + |y|^{p^*}).$
- *B* is everywhere C^1 and piecewise C^2 .

Such a function is called **Bellman function** in view of similar functions for other problems in analysis. Carbonaro-Dragičević found existence of *B* with all these properties exactly when $|\phi| < \frac{\pi}{2} - \theta_p$. One deduces the weak square function estimate.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Weighted L^p spaces

Now modify setting. Let (Ω, μ) be a measure space. A measurable function $w : \Omega \to (0, \infty)$ is called a weight. Have a weighted space $L^p(w) = L^p(\Omega, wd\mu)$ with $\|f\|_{L^p(w)} = \left(\int_{\Omega} |f(x)|^p w(x) d\mu(x)\right)^{\frac{1}{p}}$. Question: For which weights w and operators T, $\|T\|_{L^p(w)\to L^p(w)} = \left\|M_{w^{\frac{1}{p}}}TM_{w^{-\frac{1}{p}}}\right\|_{L^p(\Omega,\mu)\to L^p(\Omega,\mu)} < \infty$? Fact: If $\Omega = \mathbb{R}$ and T is the Hilbert transform (singular integral operator), then answer "yes" iff $[w]_{A_p} < \infty$, where

$$[w]_{A_p} = \sup_{B} \left(\frac{1}{|B|} \int_{B} w d\mu \right) \left(\frac{1}{|B|} \int_{B} w^{-\frac{p^*}{p}} d\mu \right)^{\frac{p}{p^*}}$$

・ロット 4回 マイボット 4回 うくの

Semigroup weights

Question: What can we say if T = m(A) stems from a semigroup? If $A = -\Delta$ on \mathbb{R}^d , then

$$[w]_{\mathcal{A}_p} \cong \sup_{t>0} \sup_{x\in\mathbb{R}^d} T_t(w)(x) \left[T_t(w^{-\frac{p^*}{p}})(x) \right]^{\frac{p}{p^*}} =: Q_p^{\mathcal{A}}(w).$$

Take the right hand side as definition of class of weights for a markovian semigroup $(T_t)_t$.

Theorem [Domelevo-K.-Petermichl 2021]

Let (Ω, μ) be a σ -finite measure space. Let $(T_t)_t$ be a markovian semigroup. Fix p = 2.

Assume some technical conditions.

Let w be a weight such that $Q_2^A(w) < \infty$. Then A has a $H^{\infty}(\Sigma_{\theta})$ calculus on $L^2(w)$ for any $\theta > \frac{\pi}{2}$.

Elements of proof

Follow Carbonaro-Dragičević's idea. There is no angle ϕ any more. Want

$$\int_0^\infty |\langle AT_t f, T_t g \rangle| dt \leq C \, \|f\|_{L^2(w)} \, \|g\|_{L^2(w^{-1})}.$$

Let $Q = Q_2^A(w) < \infty$. Put

$$\mathcal{E}(t) = \int_{\Omega} B_Q(T_t(f), T_t(g), T_t(w^{-1}), T_t(w)) d\mu$$

for some function $B_Q: D(B_Q) = \mathbb{C} \times \mathbb{C} \times \{(w, v) \in \mathbb{R}^2_+ : 1 \le wv \le Q\} \to \mathbb{R}$ to find.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof continued

In order to put $-\mathcal{E}'(t)$ into the key inequality, need to find B_Q such that

- B_Q is defined on domain $D(B_Q)$ depending on Q.
- ▶ B_Q satisfies a weak convexity (difficulty: D(B_Q) is not convex!).
- ► 0 ≤ $B_Q(x, y, w, v)$ ≤ $C\left(\frac{|x|^2}{w} + \frac{|y|^2}{v}\right)$.
- ▶ B_Q and its first derivative satisfy some technical conditions (difficulty: $\mathcal{E}(t)$ is not differentiable at t = 0).

Variants

Variants of Theorem

- 1. There exists also a version for submarkovian semigroups with a modified weight characteristic.
- Also get boundedness of m(A) on L²(w) in case m holomorphic on C₊ = Σ_{π/2} plus regularity of m on boundary = iℝ.
- 3. For certain semigroups, can lower the $H^{\infty}(\Sigma_{\theta})$ calculus angle to some $\theta = \theta(w) < \frac{\pi}{2}$. Then have bounded semigroup $\|T_t\|_{L^2(w) \to L^2(w)} \leq C$ and maximal regularity.

Extensions: Smaller angle

Theorem [Duong-Sikora-Yan 2011, Gong-Yan 2014]

Let $(T_t)_t$ is a self-adjoint semigroup on $L^2(\mathbb{R}^d, dx)$ (or more generally on $L^2(\Omega, \mu)$ where (Ω, d, μ) is a space of homogeneous type), having an integral kernel p_t with Gaussian estimates. Let $1 and <math>\theta \in (0, \pi)$ (small). Then [Domelevo K. Petermichl] holds, even on $L^p(\Omega, wd\mu)$. Moreover, there is s > 0 such that

$$egin{aligned} &\|m(A)\|_{L^p(w)
ightarrow L^p(w)} \leq C heta^{-s}(|m(0)|+\|m\|_{\infty, heta}) \ &(heta\in(0,\pi),\ m\in H^\infty(\Sigma_ heta)) \end{aligned}$$

Negative result on small angle

Theorem [Domelevo K. Petermichl 2021]

There exists a markovian semigroup $(T_t)_t$ without Gaussian estimates on some probability space (Ω, μ) and a weight w with $Q_2^A(w) < \infty$ such that for no s > 0, (1) holds with p = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you for your attention

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ